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Introduction
Quantum computers present a threat to many asymmetric key cryptosystems
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What about other cryptosystems?

symmetric key systems weakened, but not broken.

Given a bijection
f : {0, 1}k → {0, 1}k

a pre-image of y is some x such that f (x) = y . We say f is one-way if
computing a pre-image requires exhaustive search of the inputs.

Queries required to invert a k-bit one-way function:

Classical Quantum (Grover’s search)

2k O(2k/2)
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How do we defend against Grover’s search?

Conservative defense: double the security parameter (e.g. digest size).

Due to overhead of a realistic implementation, doubling the security may
not be necessary.

e.g. k/2 quantum queries may be closer to 2k/3 classical queries

Sources of overhead:

Intrinsic overhead of Grover’s search

Overhead incurred at the logical layer by performing queries
“quantumly”

Additional overhead at the physical layer due to error correction

To accurately estimate the effectiveness of a quantum attack, we need to
perform a close analysis of a realistic implementation.1

1M. Grassl, B. Langenberg, M. Roetteler, S. Steinwandt, ”Applying Grover’s
algorithm to AES: quantum resource estimates”, arXiv:1512.04965
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(Unitary) Quantum computing

Classical computing:

State of n bits: x ∈ {0, 1}n

Functions:
f : {0, 1}n → {0, 1}m

Quantum computing:

State of n qubits: |ψ〉 ∈ C2n

Functions: unitary operators
U : C2n → C2n

Unitary operator = linear, invertible, norm-preserving

We fix a basis of C2n called the computational basis and associate each
vector with a length n bit-string, denoted |x〉 for x ∈ {0, 1}n. These are
called classical states.

Example

A qubit in the state |ψ〉 = α|0〉+ β|1〉 where α, β ∈ C is said to be in a
superposition of the classical states 0 and 1.
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Oracles

Many quantum algorithms, including Grover’s search, operate by applying
classical functions to a superposition of states.

Problem: classical function may be irreversible

f (x , y) = (x , x ∧ y)

Solution: embed the function in a larger state space

Toffoli(x , y , z) = (x , y , z ⊕ x ∧ y)

caveat – computations keep allocating more and more space as they run.
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The Bennett method

Temporary space (ancillas) can be reclaimed by computing the function,
copying output, then uncomputing the function.

The quantum linear systems algorithm, even using Bennett’s trick, inflated
the number of bits from 340 to ∼ 108 – at the logical layer!2

2A. Scherer, B. Valiron, S. Mau, S. Alexander, ”Concrete resource analysis of the quantum

linear system algorithm used to compute the electromagnetic scattering cross section of a 2D

target”, arXiv:1505.06552
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Fault-tolerance

Due to short doceherence time for quantum states, some form of error
correction is necessary.

To achieve fault-tolerance, a logical qubit is encoded into many physical
qubits via an error correcting code. This process may be iterated many
times with different codes (concatenation) until desired error rate is
achieved.

→ → ...

Surface code: leading modern code, places qubits on a 2D lattice.
Surface code cycle: syndrome is measured and errors are corrected.
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How can we compare quantum and classical costs?

Without significant future effort, the classical processing will
almost certainly limit the speed of any quantum computer,
particularly one with intrinsically fast quantum gates.3

Assumptions:

1 Any large quantum computation will use surface code error correction.

2 The surface code error correction routine requires one classical
processor (ASIC) per logical qubit.

3 Each ASIC performs a constant number of operations per surface
code cycle.

4 The temporal cost of one surface code cycle is equal to the temporal
cost of one hash function invocation.

3A. Fowler et al, ”Towards practical classical processing for the surface code: Timing
analysis”, Phys. Rev. A 86, 042313 (2012)
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Cost metric

Cost metric

The cost of a quantum computation involving ` logical qubits for a
duration of σ surface code cycles is equal to the cost of classically
evaluating a hash function ` · σ times.
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Analyzing Grover Part I – Grover’s Algorithm

Given a predicate g : {0, 1}k → {0, 1} with one solution g(x) = 1,
Grover’s search finds x in O(2k/2) queries with error O(1/2k).

Structure of Grover’s search:
1 Construct superposition over all

bitstrings

2 Apply Grover iterate G bπ
4
2k/2c

times. G uses two subroutines:

1 Ug , which implements the
predicate g : x 7→ 1 iff f (x) = y

2 The diffusion operator 2|0〉〈0| − I
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Analyzing Grover Part II – The Oracles
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Analyzing Grover Part III – Optimization

Goal: reduce T gates and T -depth (layers of parallel T gates)

T P Z H CNOT T-Depth Depth
SHA-256 401584 0 0 114368 534272 171552 528768
SHA-256 (Opt.) 228992 72976 6144 94144 4209072 70400 830720

SHA3-256 591360 0 0 168960 33269760 792 10128
SHA3-256 (Opt.) 499200 46080 0 168960 34260480 432 11040
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Analyzing Grover Part IV – The Physical Layer

Assumption: per-gate physical rates of pg = 10−5.

SHA-256 SHA3-256
G
ro
ve
r

T -count 1.27× 1044 2.71× 1044

T -depth 3.76× 1043 2.31× 1041

Logical qubits 2402 3200

Surface code distance 43 44

Physical qubits 1.39× 107 1.94× 107

A
L
F
ac
to
ri
es Logical qubits per factory 3600 3600

Magic state factories 1 294

Surface code distances {33, 13, 7} {33, 13, 7}
Physical qubits 5.54× 105 1.63× 108

T
o
ta
l Logical qubits 212.6 220

Surface code cycles 2153.8 2146

Total cost 2166.4 2166
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Conclusions

Under reasonable assumptions, SHA-256 and SHA3-256 provide 166 bits
of security against pre-image attacks in a quantum setting.

=⇒ Theoretical advantages of quantum searching hide
significant practical overhead!
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What’s next?

Automate & apply our scheme to other resource estimation problems.

Find better circuit optimization techniques to reduce cost.

Give better physical estimates by taking topological optimizations
into account.

Provide theoretical lower bounds.
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Thanks for listening!
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