A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes

Jean-Claude Bajard¹, Julien Eynard² **M. Anwar Hasan**², Vincent Zucca¹

¹Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, France ²Dept. of Electrical and Computer Engineering, University of Waterloo

10-12 August 2016

Full RNS Variant of FV like schemes

Context

Homomorphic Encryption (HE):

"Noisy encryption"

- Each ciphertext contains a noise.
- After each homomorphic operation the noise grows.
- Decryption remains correct until the noise reaches a certain bound.
 - \implies Limited number of operations.
 - \implies "Somewhat" Homomorphic Encryption (SHE).

Purpose of this work

Arithmetical optimization of a certain type of SHE schemes.

Bajard, Eynard, Hasan, Zucca

Outline

- Introducing Residue Number Systems (RNS) and FV scheme
- Full RNS variant of FV decryption
- Full RNS variant of FV multiplication
- Experiments
- Conclusion

47 ▶

Chinese Remainder Theorem

Pairwise **coprime** integers $\mathcal{B}_q = \{q_1, \ldots, q_k\}$: "RNS base" $(q = \prod_{i=1}^k q_i)$,

$$\varphi: \mathbb{Z}_q \xrightarrow{\sim} \mathbb{Z}_{q_1} \times \ldots \times \mathbb{Z}_{m_k}$$
 (isomorphism)

Residue Number Systems

- Large $x \in [0, q) \leftrightarrow k$ small residues $(x \mod q_1, \dots, x \mod q_k)$.
- Non positional number system.
- Parallel, carry-free arithmetic +, -, ×, ÷ on residues.

Base extensions $\mathcal{B}_q = \{q_1, \ldots, q_k\} \rightarrow \mathcal{B} = \{m_1, \ldots, m_\ell\}$

- **Fast** but approximate: x in $\mathcal{B}_q \to |x|_q + \alpha q$ in \mathcal{B} .
- Sometimes, possible to add an extra modulus m to correct α efficiently.

(日) (同) (三) (三)

Where everything happens in *FV scheme (Fan and Vercauteren, 2012)* $\mathcal{R} = \mathbb{Z}[X]/(X^n + 1), n = 2^h \leftrightarrow \text{integer polynomials of degree} < n$ • *t*: **plaintext** modulus (**given**), $\mathbf{m} \in \mathcal{R}_t = \mathcal{R}/t\mathcal{R}$ (coeff. modulo *t*)

- *q*: ciphertext modulus (>> t), $c \in \mathcal{R}_q \times \mathcal{R}_q$ (coeff. modulo *q*)
- $[x]_q$ is $(x \mod q)$ in [-q/2, q/2) (centered remainder),
- $|x|_q$ is $(x \mod q)$ in [0, q) (classical non negative remainder).

< 回 ト < 三 ト < 三 ト

Context: $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$

Common optimizations for arithmetic on...

...coefficients: **Residue Number Systems** q free of form: choose $q = q_1 \dots q_k$ (small prime moduli q_i)

$$\mathbb{Z}_q \simeq \mathbb{Z}_{q_1} \times \ldots \times \mathbb{Z}_{q_k}$$

...polynomials: Number Theoretic Transform

Optimized polynomial product (for *n* a power of 2): $O(n \log_2(n))$ (matches with RNS representation)

< 回 ト < 三 ト < 三 ト

Bajard, Eynard, Hasan, Zucca

3

(人間) トイヨト イヨト

Bajard, Eynard, Hasan, Zucca

Full RNS Variant of FV like schemes

10-12 August 2016 7 / 1

3

(人間) トイヨト イヨト

Bajard, Eynard, Hasan, Zucca

Full RNS Variant of FV like schemes

10-12 August 2016 7 / 1

3

< 回 > < 三 > < 三 >

 χ_{key} and χ_{err} : "small" distributions on \mathcal{R}_q ; \mathcal{U} : uniform distrib. on \mathcal{R}_q

Key Generation

Encryption

 $[\mathbf{m}]_t \in \mathcal{R}_t \text{ to be encrypted, public key } \mathbf{pk},$ $\bullet \text{ sample } (\mathbf{e_1}, \mathbf{e_2}, \mathbf{u}) \leftarrow (\chi_{err})^2 \times \mathcal{U} \\ \bullet \text{ output } (\mathbf{c}_0, \mathbf{c}_1) = ([\Delta[\mathbf{m}]_t + \mathbf{p}_0\mathbf{u} + \mathbf{e_1}]_q, [\mathbf{p_1u} + \mathbf{e_2}]_q) \text{ (with } \Delta = \lfloor \frac{q}{t} \rfloor \text{)}$

$$[\boldsymbol{c}_0 + \boldsymbol{c}_1 \boldsymbol{s}]_q = [\Delta[\boldsymbol{m}]_t + \boldsymbol{v}]_q$$
$$\boldsymbol{v}: \text{"fresh noise"}$$

< 回 ト < 三 ト < 三 ト

The decryption process

 $(\mathbf{c}_0, \mathbf{c}_1)$ encrypting $[\mathbf{m}]_t$, with noise \mathbf{v} : $[\mathbf{c}_0 + \mathbf{c}_1 \mathbf{s}]_q = \Delta [\mathbf{m}]_t + \mathbf{v} + q\mathbf{r}$

- **(**) scale-down: $\frac{t}{q} \cdot [\boldsymbol{c}_0 + \boldsymbol{c}_1 \boldsymbol{s}]_q = [\boldsymbol{m}]_t + \frac{\boldsymbol{v}'}{q} + t\boldsymbol{r}$
- **3** round-off: $\lfloor [\boldsymbol{m}]_t + \frac{\boldsymbol{v}'}{q} + t\boldsymbol{r} \rfloor = [\boldsymbol{m}]_t + \lfloor \frac{\boldsymbol{v}'}{q} \rfloor + t\boldsymbol{r}$

Bound on noise: $\|\mathbf{v}\|_{\infty} = \max(|\mathbf{v}_i|) < \frac{\Delta - |q|_t}{2} \Rightarrow \lfloor \frac{\mathbf{v}'}{q} \rfloor = 0.$

$$\operatorname{Dec}(\boldsymbol{c}, \mathbf{s}\boldsymbol{k}) = [\lfloor \frac{t}{q} \cdot [\boldsymbol{c}_0 + \boldsymbol{c}_1 \boldsymbol{s}]_q]]_t = [[\boldsymbol{m}]_t + t\boldsymbol{r}]_t = [\boldsymbol{m}]_t.$$

Issue for RNS (non positional) representation

How to compute $\left(\left\lfloor \frac{t}{q} \cdot x \right\rfloor \mod t\right)$ in RNS? (q, t known; input x mod q in RNS)

イロト 不得 トイヨト イヨト 二日

Computing a round-off in RNS

In RNS, exact division can be done efficiently, so we use:

$$\left\lfloor \frac{t}{q} \cdot x \right\rceil = \frac{tx - |tx|_q}{q} + \mathbf{b}, \ (\mathbf{b} \in \{0, 1\})$$

() fast approximate extension of $|tx|_q$ (in RNS) to RNS base $\{t\}$:

$$\sum_{i=1}^{k} |tx \frac{q_i}{q}|_{q_i} \cdot |\frac{q}{q_i}|_t \mod t = |tx|_q + \alpha q \mod t \quad (\alpha \in [0, k) \cap \mathbb{Z})$$

Remark: since tx cancels modulo t, only compute $\frac{-(|tx|_q + \alpha q)}{q} \mod t$.

An error occurs

Error *E* corrected \Rightarrow correct decryption.

Bajard, Eynard, Hasan, Zucca

10-12 August 2016 10 / 1

Correcting the error

Rewrite in \mathbb{Z} : $tx = \lfloor \frac{t}{q} \cdot x \rceil q + [tx]_q$

If gap $\varepsilon > 0$ $\left(-\frac{q}{2} + \varepsilon \leqslant [tx]_q \leqslant \frac{q}{2} - \varepsilon\right)$ then scale by $\gamma \in \mathbb{N}$:

$$\left\lfloor \gamma \frac{t}{q} \cdot x \right\rfloor - E = \gamma \left\lfloor \frac{t}{q} \cdot x \right\rfloor + \left\lfloor \gamma \frac{[tx]_q}{q} \right\rfloor - E$$

Now comes the **trick**

If
$$\gamma \varepsilon \ge k + \frac{1}{2}$$
 then $|[\gamma \frac{[tx]_q}{q}] - E| < \frac{\gamma}{2}$
 \rightsquigarrow computing $[[\gamma \frac{t}{q} \cdot x] - E]_{\gamma} = [\gamma \frac{[tx]_q}{q}] - E$ gives exactly the error

Strategy

• Compute $\left[\gamma \frac{t}{a} \cdot x\right]$ modulo t and modulo γ .

2 Use centered remainder modulo γ to correct the error.

Bajard, Eynard, Hasan, Zucca

$\texttt{Dec}_{\texttt{RNS}}((\textbf{\textit{c}}_0, \textbf{\textit{c}}_1), \textbf{\textit{s}}, \gamma)$

Require: (c_0, c_1) an encryption of $[m]_t$, and s the secret key, both in base q; an integer γ coprime to t and q**Ensure:** $[m]_t$

- 1: for $m \in \{t, \gamma\}$ do 2: $s^{(m)} \leftarrow \sum_{i=1}^{k} |\gamma t \frac{q_i}{q} \cdot (c_0 + c_1 s)|_{q_i} \times |-\frac{q}{q_i} q^{-1}|_m \mod m$ 3: end for 4: $\tilde{s}^{(\gamma)} \leftarrow [s^{(\gamma)}]_{\gamma}$ 5: $m^{(t)} \leftarrow [(s^{(t)} - \tilde{s}^{(\gamma)}) \times |\gamma^{-1}|_t]_t$
- 6: **return** *m*^(*t*)

Contributions

- Better asymptotic complexity: $\mathcal{O}(n^3) \rightarrow \mathcal{O}(n^2 \log_2(n))$.
- Very flexible in terms of parallelization.
- Modified bound for noise: $\|\mathbf{v}\|_{\infty} < \frac{\Delta |q|_t}{2} \frac{k\Delta}{\gamma}$. (although no significant consequence in practice)

Homomorphic multiplication of $(\textbf{\textit{c}}_0, \textbf{\textit{c}}_1)$ by $(\textbf{\textit{c}}_0', \textbf{\textit{c}}_1')$

Issues in original process for an RNS variant

 $\textbf{O} \ \text{Computing} \ (\tilde{\boldsymbol{c}}_0, \tilde{\boldsymbol{c}}_1, \tilde{\boldsymbol{c}}_2) = (\boldsymbol{c}_0 \boldsymbol{c}_0', \boldsymbol{c}_0 \boldsymbol{c}_1' + \boldsymbol{c}_0' \boldsymbol{c}_1, \boldsymbol{c}_1 \boldsymbol{c}_1') \ \text{over} \ \mathbb{Z} \ (\text{lift}).$

Homomorphic multiplication of $(\textbf{\textit{c}}_0, \textbf{\textit{c}}_1)$ by $(\textbf{\textit{c}}_0', \textbf{\textit{c}}_1')$

Issues in original process for an RNS variant Computing $(\tilde{c}_0, \tilde{c}_1, \tilde{c}_2) = (c_0c'_0, c_0c'_1 + c'_0c_1, c_1c'_1)$ over \mathbb{Z} (lift).

3 division+round-off: $\hat{c}_i = \lfloor \frac{t}{q} \cdot \tilde{c}_i \rfloor$. ("degree-2" ciphertext: $\hat{c}_0 + \hat{c}_1 s + \hat{c}_2 s^2 = \Delta[m_1 m_2] + v \mod q$)

Homomorphic multiplication of $(\textbf{\textit{c}}_0, \textbf{\textit{c}}_1)$ by $(\textbf{\textit{c}}_0', \textbf{\textit{c}}_1')$

・ 同 ト ・ ヨ ト ・ ヨ ト

Homomorphic multiplication of $(\textbf{\textit{c}}_0, \textbf{\textit{c}}_1)$ by $(\textbf{\textit{c}}_0', \textbf{\textit{c}}_1')$

Issues in original process for an RNS variant Computing (*c̃*₀, *c̃*₁, *c̃*₂) = (*c*₀*c*'₀, *c*₀*c*'₁ + *c*'₀*c*₁, *c*₁*c*'₁) over Z (lift). division+round-off: *ĉ*_i = [*t*/*q* · *c̃*_i]. ("degree-2" ciphertext: *ĉ*₀ + *ĉ*₁*s* + *ĉ*₂*s*² = Δ[*m*₁*m*₂] + *v* mod *q*) Relinearizing: (*ĉ*₀ + *ĉ*₂*s*², *ĉ*₁) ^{*s* private}/_{*i*} (*ĉ*₀ + *ĉ*₂(*s*² + *e* + *as*), *ĉ*₁ - *aĉ*₂). But large noise ||*ĉ*₂ × *e*||_∞ < *q* × *nB*_{err}! Original solution is to... decompose *ĉ*₂ = *b*₀ + *b*₁ω + ... + *b*_{ℓ-1}ω^{ℓ-1} in radix ω.

・ 同 ト ・ ヨ ト ・ ヨ ト

Homomorphic multiplication of $(\textbf{\textit{c}}_0, \textbf{\textit{c}}_1)$ by $(\textbf{\textit{c}}_0', \textbf{\textit{c}}_1')$

Issues in original process for an RNS variant Computing (*c*₀, *c*₁, *c*₂) = (*c*₀*c*₀', *c*₀*c*₁' + *c*₀'*c*₁, *c*₁*c*₁') over Z (lift). division+round-off: *ĉ_i* = [*t*/*q* · *ĉ_i*]. ("degree-2" ciphertext: *ĉ*₀ + *ĉ*₁*s* + *ĉ*₂*s*² = Δ[*m*₁*m*₂] + *v* mod *q*) Relinearizing: (*ĉ*₀ + *ĉ*₂*s*², *ĉ*₁) *s* private (*ĉ*₀ + *ĉ*₂(*s*² + *e* + *as*), *ĉ*₁ - *aĉ*₂). But large noise ||*ĉ*₂ × *e*||_∞ < *q* × *nB*_{err}! Original solution is to... decompose *ĉ*₂ = *b*₀ + *b*₁*ω* + ... + *b*_{ℓ-1}*ω*^{ℓ-1} in radix *ω*. Public key: r1k = (*s*² · (1, *ω*, ..., *ω*^{ℓ-1}) + *e* + *as*, -*a*).

< 回 > < 三 > < 三 > .

Homomorphic multiplication of $(\textbf{\textit{c}}_0, \textbf{\textit{c}}_1)$ by $(\textbf{\textit{c}}_0', \textbf{\textit{c}}_1')$

Issues in original process for an RNS variant Computing (*˜*₀, *˜*₁, *˜*₂) = (*c*₀*c*'₀, *c*₀*c*'₁ + *c*'₀*c*₁, *c*₁*c*'₁) over Z (lift). division+round-off: *ĉ_i* = [*t*/*q* · *˜c_i*]. ("degree-2" ciphertext: *ĉ*₀ + *ĉ*₁*s* + *ĉ*₂*s*² = Δ[*m*₁*m*₂] + *v* mod *q*) Relinearizing: (*ĉ*₀ + *ĉ*₂*s*², *ĉ*₁) *s* private (*ĉ*₀ + *ĉ*₂(*s*² + *e* + *as*), *ĉ*₁ - *aĉ*₂). But large noise ||*ĉ*₂ × *e*||_∞ < *q* × *nB*_{err}! Original solution is to... decompose *ĉ*₂ = *b*₀ + *b*₁*ω* + ... + *b*_{ℓ-1}*ω*^{ℓ-1} in radix *ω*. Public key: r1k = (*s*² · (1, *ω*, ..., *ω*^{ℓ-1}) + *e* + *as*, -*a*). Smaller noise ||(*b*₀, *b*₁, ..., *b*_ℓ) · *e*||_∞ < *ℓω* × *nB*_{err}.

・何・ ・ヨ・ ・ヨ・ ・ヨ

Homomorphic multiplication of $(\mathbf{c}_0, \mathbf{c}_1)$ by $(\mathbf{c}_0', \mathbf{c}_1')$

Issues in original process for an RNS variant

- $\textbf{O} \quad \text{Computing } (\tilde{\textbf{c}}_0, \tilde{\textbf{c}}_1, \tilde{\textbf{c}}_2) = (\textbf{c}_0 \textbf{c}_0', \textbf{c}_0 \textbf{c}_1' + \textbf{c}_0' \textbf{c}_1, \textbf{c}_1 \textbf{c}_1') \text{ over } \mathbb{Z} \text{ (lift)}.$
- **3** division+round-off: $\hat{c}_i = \lfloor \frac{t}{q} \cdot \tilde{c}_i \rfloor$. ("degree-2" ciphertext: $\hat{c}_0 + \hat{c}_1 s + \hat{c}_2 s^2 = \Delta[m_1 m_2] + v \mod q$)
- Selinearizing: $(\hat{c}_0 + \hat{c}_2 s^2, \hat{c}_1) \xrightarrow{s \text{ private}} (\hat{c}_0 + \hat{c}_2(s^2 + e + as), \hat{c}_1 a\hat{c}_2).$ But large noise $\|\hat{c}_2 \times e\|_{\infty} < q \times nB_{\text{err}}!$ Original solution is to...
 decompose $\hat{c}_2 = b_0 + b_1\omega + \ldots + b_{\ell-1}\omega^{\ell-1}$ in radix ω .
 Public key: $rlk = (s^2 \cdot (1, \omega, \ldots, \omega^{\ell-1}) + \vec{e} + \vec{a}s, -\vec{a}).$ Smaller noise $\|(b_0, b_1, \ldots, b_\ell) \cdot \vec{e}\|_{\infty} < \ell\omega \times nB_{\text{err}}.$

Issues for RNS representation

Lifting in \mathbb{Z} , dividing and rounding, using positional system in radix $\omega...$

イロト 不得 トイヨト イヨト 二日

Problem 1: Computing the products $(\tilde{c}_0, \tilde{c}_1, \tilde{c}_2)$

 $\|m{ ilde c}_i\|_\infty <\sim nq^2$: no lift in $\mathbb Z$, just use a larger base than $\{q_1,\ldots,q_k\}$

3

∃ → (∃ →

A 🕨 🗸

Problem 1: Computing the products $(\tilde{c}_0, \tilde{c}_1, \tilde{c}_2)$

 $\| ilde{m{c}}_i\|_\infty <\sim nq^2$: no lift in $\mathbb Z$, just use a larger base than $\{q_1,\ldots,q_k\}$

Solutions: Introducing a second RNS base \mathcal{B}

Stepbase q_1, \ldots, q_k base $\mathcal{B} \cup \{\tilde{m}\}$ 0 c_i, c'_j to be reduced1 c_i, c'_j $\overbrace{fast approximate}_{extension} \in [c_i]_q + qu_i, [c'_j]_q + qu'_j$ 2 $\hat{c}_i \leftarrow \mathsf{MRed_q}_{i\tilde{n}}([c_i]_q + qu_i)$ 3 $\tilde{c}_0 \leftarrow c_0 \times c'_0$, etc

Only fast approximate RNS base extensions to get [c_i]_q, [c'_j]_q in B,
 + low cost Montgomery reductions of the approximations "u_i, u'_i".

Bajard, Eynard, Hasan, Zucca

Full RNS Variant of FV like schemes

Problem 2: Division and round-off $\hat{c}_i = \lfloor \frac{t}{a} \cdot \tilde{c}_i \rfloor$ in RNS

Context \neq decryption: no large enough gap $\frac{q}{2} - \|[\tilde{c}_i]_q\| \ge \varepsilon > 0$, no guaranteed correct RNS round-off.

- 3

・ 同 ト ・ ヨ ト ・ ヨ ト

Full RNS variant of FV multiplication Problem 2: Division and round-off $\hat{c}_i = \lfloor \frac{t}{q} \cdot \tilde{c}_i \rfloor$ in RNS Context \neq decryption: no large enough gap $\frac{q}{2} - \|[\tilde{c}_i]_q\| \ge \varepsilon > 0$, no guaranteed correct RNS round-off.

Approximate round-off \Rightarrow new analysis of noise growth provided.

Bajard, Eynard, Hasan, Zucca

Full RNS Variant of FV like schemes

Problem 3: Access to positional system

 $\hat{c}_2 = b_0 + b_1 \omega + \ldots + b_{\ell-1} \omega^{\ell-1}$ in positional system with radix ω *Recall:* replace $\hat{c}_2 \times e^{\|\cdot\|} q \times nB_{err} \rightsquigarrow (b_0, b_1, \ldots, b_\ell) \cdot \vec{e}^{\|\cdot\|} \ell \omega \times nB_{err}$

Problem 3: Access to positional system

 $\hat{\boldsymbol{c}}_2 = \boldsymbol{b}_0 + \boldsymbol{b}_1 \omega + \ldots + \boldsymbol{b}_{\ell-1} \omega^{\ell-1} \text{ in positional system with radix } \omega$ *Recall:* replace $\hat{\boldsymbol{c}}_2 \times \boldsymbol{e} \stackrel{\|\cdot\|}{\sim} q \times nB_{\text{err}} \rightsquigarrow (\boldsymbol{b}_0, \boldsymbol{b}_1, \ldots, \boldsymbol{b}_\ell) \cdot \vec{\boldsymbol{e}} \stackrel{\|\cdot\|}{\sim} \ell \omega \times nB_{\text{err}}$

Solution: Just use RNS representation...

If $\omega \sim q_i$ (i.e. $\ell = k$), use RNS representation for a fairly equivalent effect.

$$\hat{\boldsymbol{c}}_2 = \boldsymbol{b}_0 + \boldsymbol{b}_1 \omega + \ldots + \boldsymbol{b}_{\ell-1} \omega^{\ell-1} \qquad (\boldsymbol{b}_i = |[\hat{\boldsymbol{c}}_2 \omega^{-i}]|_{\omega}) \\ \hat{\boldsymbol{c}}_2 = \boldsymbol{d}_1 \frac{q}{q_1} + \boldsymbol{d}_2 \frac{q}{q_2} + \ldots + \boldsymbol{d}_k \frac{q}{q_k} \mod \boldsymbol{q} \quad (\boldsymbol{d}_i = |\hat{\boldsymbol{c}}_2 \frac{q_i}{q}|_{q_i})$$

 $\|\boldsymbol{b}_i\|_{\infty} \sim \|\boldsymbol{d}_i\|_{\infty} \Rightarrow \|(\boldsymbol{b}_0, \boldsymbol{b}_1, \dots, \boldsymbol{b}_{\ell-1}) \cdot \vec{\boldsymbol{e}}\|_{\infty} \sim \|(\boldsymbol{d}_1, \boldsymbol{d}_2, \dots, \boldsymbol{d}_k) \cdot \vec{\boldsymbol{e}}\|_{\infty}$

 \Rightarrow bound $\ell \omega \times nB_{err}$ becomes $k\omega \times nB_{err}$

 $\mathsf{Public key:} \ \boldsymbol{s}^2 \cdot (1, \omega, \dots, \omega^{\ell-1}) + \overrightarrow{\boldsymbol{e}} + \overrightarrow{\boldsymbol{a}} \, \boldsymbol{s} \leadsto \boldsymbol{s}^2 \cdot (\frac{q}{q_1}, \dots, \frac{q}{q_k}) + \overrightarrow{\boldsymbol{e}} + \overrightarrow{\boldsymbol{a}} \, \boldsymbol{s}$

イロン 不通 とうほう イ

Contributions

- Prior costly operations over $\mathbb{Z} \leadsto$ fast RNS base extensions.
- Fairly equivalent noise growth (mult. depth unchanged most of the time).
- Same number of polynomial products ⇒ same asymptotic complexity.
- Better complexity for operations on coefficients.
- Well suited for parallelization.

Experiments

Software implementation

- in C++,
- \bullet based on NFLlib (dedicated to RNS polynomial arith. in ${\cal R}$ with NTT),
- compared with^a standard approach with NFLlib+GMP 6.1.0,
- on laptop under Fedora 22 with i7-4810MQ CPU @ 2.80GHz, g++ 5.3.1, Hyper-Threading and Turbo Boost turned off.

^ahttps://github.com/CryptoExperts/FV-NFLlib

Experiments - Speed-up factors

${\cal V}$ bit-size of moduli	$\log_2(n)$	11	12	13	14	15	$t - 2^{10}$
30	k	3	6	13	26	53	t - 2
62	k	1	3	6	12	25	$\gamma=2^{\circ}$ (sufficient; practical)

 $n \nearrow \text{NTT's}$ dominate computational effort \Rightarrow speed-up \searrow .

Bajard, Eynard, Hasan, Zucca

Full RNS Variant of FV like schemes

Conclusion

- Optimization of arithmetic on polynomials at the coefficient level.
 - Benefits to SHE schemes like FV.
 - No more need of any positional system: only RNS.
- Possible greater noise growth, but not that significant in practice.
- Opens the door to highly competitive parallel implementation of homomorphic encryption.