
Uniform First-Order Threshold Implementations

Tim Beyne, Begül Bilgin

COSIC / ESAT, KULeuven and iMinds, Belgium

August 10, 2016

COSIC

COSIC
Threshold Implementations
Introduction

I Countermeasure against side-channel attacks
I First-order attacks: provably secure
I Higher-order attacks: not in this paper

I Based on secret sharing and multi-party computation
I Input is split into random shares: sharing
I Function is split into shares: realization

I Implementation cost increases with number of shares
I More gates
I More randomness (sometimes)

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 2

COSIC
Threshold Implementations
Definitions

I x ∈ F2 is split into random shares x1, . . . , xs (“sharing”)

I x = (x1, . . . , xs) is a correct sharing:

x =
s⊕

i=1

xi

I A sharing is uniformly generated if, for all x , every correct
sharing x is equally likely

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 3

COSIC
Threshold Implementations
Definitions

I Unshared Boolean function f : Fn
2 → F2

(x1, . . . , xn) 7→ f (x1, . . . , xn)

I Realization f = (f1, f2, . . . , fsout) with fi : Fn sin
2 → F2

I Correctness

f (x1, . . . , xn) =
sout⊕
i=1

fi (x
1, . . . , xn)

I Noncompleteness: each fi is independent of x ji (∀j , 1 ≤ j ≤ n)

I Vectorial functions: repeat for each coordinate function

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 4

COSIC
Threshold Implementations
Security guarantees

I Output share does not reveal anything about a uniformly
shared input

I Output f must be uniform when cascading functions
= “uniformity property”

I g ◦ f is secure against first-order attacks if f(x) is uniformly
generated

f

R
eg

is
te

r

gx g(f(x))

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 5

COSIC
Threshold Implementations
Example

I f (x1, x2) = x1x2 (x i = x i1 ⊕ x i2 ⊕ x i3)

I f1 ⊕ f2 ⊕ f3 = (x11 ⊕ x12 ⊕ x13) · (x21 ⊕ x22 ⊕ x23)

f1 = x12x
2
2 ⊕ x12x

2
3 ⊕ x13x

2
2

f2 = x11x
2
3 ⊕ x13x

2
1 ⊕ x13x

2
3

f3 = x11x
2
1 ⊕ x11x

2
2 ⊕ x12x

2
1

(f1, f2, f3)
(x1, x2) 000 001 010 011 100 101 110 111

00 7 0 0 3 0 3 3 0
01 7 0 0 3 0 3 3 0
10 7 0 0 3 0 3 3 0
11 0 5 5 0 5 0 0 1

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 6

COSIC
Threshold Implementations
Uniformity table

I The uniformity table U has elements Ux ,y
I A realization is uniform iff ∀x , y:

Ux ,y = 2n(sin−1)−m(sout−1) or 0

(with m the number of output bits)

(f1, f2, f3)
(x1, x2) 000 011 101 110 001 010 100 111

00 4 0 0 4 0 4 4 0
01 4 0 0 4 0 4 4 0
10 4 0 0 4 0 4 4 0
11 0 4 4 0 4 0 0 4

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 7

COSIC
Threshold Implementations
Solutions for Uniformity: Remasking

I Adding new randomness (“remasking”)

I Randomness is not free
I Example: Keccak-f [1600] with 3 shares

I 10 bits of randomness per S-box evaluation
I 24 rounds, 320 S-box evaluations per round

f

R
eg

is
te

r

gx g(f(x))
⊕ ⊕ ⊕

r1
r2
(r1 ⊕ r2)

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 8

COSIC
Threshold Implementations
Solutions for Uniformity: Correction Terms

I Adding “correction terms” (CTs) to achieve uniformity

I Add the same term to two output shares

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 9

COSIC
Threshold Implementations
Solutions for Uniformity: Correction Terms

I f (x1, x2) = x1x2 (x i = x i1 ⊕ x i2 ⊕ x i3)

I f1 ⊕ f2 ⊕ f3 = (x11 ⊕ x12 ⊕ x13) · (x21 ⊕ x22 ⊕ x23)

f1 = x12x
2
2 ⊕ x12x

2
3 ⊕ x13x

2
2⊕x13 ⊕ x23

f2 = x11x
2
3 ⊕ x13x

2
1 ⊕ x13x

2
3⊕x13 ⊕ x23

f3 = x11x
2
1 ⊕ x11x

2
2 ⊕ x12x

2
1

(f1, f2, f3)
(x1, x2) 000 011 101 110 001 010 100 111

00 5 0 0 1 0 5 5 0
01 5 0 0 1 0 5 5 0
10 5 0 0 1 0 5 5 0
11 0 3 3 0 7 0 0 3

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 10

COSIC
Threshold Implementations
Solutions for Uniformity: Correction Terms

I Difficult due to the size of the search space
(4 bit S-box: (230)4 with linear and quadratic CTs)

I Not always possible (more shares might be required)
e.g. no known 3-share uniform realization of Keccak-f [b]

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 11

COSIC
Threshold Implementations
Solutions for Uniformity: Partial Uniformity

I Combination of remasking and correction terms

I If a subset of the output shares is uniform,
only remask the others

I Requires less randomness than remasking
e.g. Keccak-f[1600]: 4 bits / S-box (compare with 10)

I Easier than finding a completely uniform realization

Uniform Not uniform

x1︷ ︸︸ ︷
x11 x12 x13

x2︷ ︸︸ ︷
x21 x22 x23

⊕ ⊕ ⊕
r1 r2 (r1 ⊕ r2)

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 12

COSIC
Threshold Implementations
Solutions for Uniformity: Partial Uniformity

I Find uniform realizations for each coordinate function of f by
iterating over all CTs

I For l = 2 . . .m, check which l-combinations are uniform

I Problems to solve
I Checking uniformity is slow
I Search space of correction terms is large

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 13

COSIC
Checking Uniformity
Approach

I Here: Boolean functions (one unshared output bit)

I Naive method: compute the uniformity table
(worst-case: 2nsin evaluations of the realization)

I Uniformity table is not random

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 14

COSIC
Checking Uniformity
Restrictions on the Uniformity Table

I The entries of any row of U are related by the same linear
equations

I For sout = 3 we have as many equations as unknowns
I System of equations has a unique solution
I Any row completely determines U

I Only one row must be checked to check uniformity

I Complexity reduced by factor 2n

I It also follows that

(f1, f2, f3) is uniform ⇐⇒ f1, f2, f3 are balanced

I sout ≥ 4
I Multiple rows necessary
I More complicated restrictions on the uniformity table

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 15

COSIC
Threshold Implementations
Solutions for Uniformity: Partial Uniformity

I Find uniform realizations for each coordinate function of f by
iterating over all CTs

I For l = 2 . . .m, check which l-combinations are uniform

I Problems to solve
I Checking uniformity is slow
I Search space of correction terms is large

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 16

COSIC
Correction Terms
Linear Correction Terms

I Walsh-Hadamard transform Wfi of fi : Fn (sin−1)
2 → F2

I fi (x)⊕ a · x is balanced if and only if Wfi (a) = 0

I Wfi can be computed in O(n(sin − 1)2(sin−1)n) operations

I (f1 ⊕ a · x, f2 ⊕ b · x, f3 ⊕ (a⊕ b) · x) is uniform if and only if

Wf1(a) = 0 with ai1 = 0

Wf2(b) = 0 with bi2 = 0

Wf3(a⊕ b) = 0 with ai3 = bi3

I Necessary but not sufficient for sout > 3

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 17

COSIC
Correction Terms
Linear Correction Terms

I For a bent function fi :

∀a ∈ Fn(sin−1)
2 :Wfi (a) 6= 0

I Impossible to find linear corrections

I Avoid bent functions by using nonlinear correction terms

I e.g. F4-multiplier used in some AES implementations

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 18

COSIC
Finding Uniform Realizations
Overview for quadratic Boolean functions

Realization to make uniform

Bent
shares?

Linear CTs (WHT)

Quadratic CTs

Uniform realization
Note: if sout > 3,
the uniformity of the
result must be checked

No

Yes

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 19

COSIC
Correction Terms
Quadratic Correction Terms

I Systematic method to avoid bent components for quadratic
Boolean functions

I Matrix Mi of the bilinear form of each share fi
I Correctness:

∑sout
i=1 Mi = M

(M is a block-matrix with sin × sin blocks with values from the
matrix of the bilinear form of f)

I Non-bent: rank (Mi) < n(sin − 1).

I Find sout matrices Mi such that both conditions are satisfied

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 20

COSIC
Correction Terms
Quadratic Correction Terms

I There is an invertible T such that M = TNTT with

N =


0 J
J 0

0 J
J 0

. . .
0

 with J =

(1 ··· 1
...

. . .
...

1 ··· 1

)
∈ Fsin×sin

2

I It is easier to find Ni such that N =
∑sout

i=1Ni with
rank (Ni) < n(sin − 1)

I Let Mi = TNiT
T (T preserves rank and non-completeness)

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 21

COSIC
Correction Terms
Quadratic Correction Terms

N =

 0 J
J 0

0 J
J 0

0 J
J 0



=


0 J1
J1 0

0 J′1
J′1 0

0 J′′1
J′′1 0

+


0 J2
J2 0

0 J′2
J′2 0

0 J′′2
J′′2 0

+


0 J3
J3 0

0 J′3
J′3 0

0 J′′3
J′′3 0


with

J1 =
(

0 0 0
0 1 1
0 1 1

)
, J2 =

(
1 0 1
0 0 0
1 0 0

)
, J3 =

(
0 1 0
1 0 0
0 0 0

)
J ′1 =

(
0 0 0
0 0 1
0 1 0

)
, J ′2 =

(
1 0 1
0 0 0
1 0 1

)
, J ′3 =

(
0 1 0
1 1 0
0 0 0

)
J ′′1 =

(
0 0 0
0 0 1
0 1 0

)
, J ′′2 =

(
0 0 1
0 0 0
1 0 1

)
, J ′′3 =

(
1 1 0
1 1 0
0 0 0

)
Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 22

COSIC
Conclusion

I Theoretical results on the uniformity property

I Efficient method to check uniformity
I Systematic search method for

I Linear correction terms
I Quadratic correction terms

I Uniform realizations for most quadratic Boolean functions
with only 3 shares

I Specific examples: 50% randomness reduction for
I F4-multiplier used in some AES implementations
I “Problematic” Q4

300 4-bit permutations

I Future applications: any quadratic function
(higher-degree functions can be decomposed first)

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 23

COSIC

Thank you for your attention.

Questions?

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 24

	Threshold Implementations
	Basics
	Uniformity

	Checking Uniformity
	Approach
	Restrictions on the Uniformity Table

	Correction Terms
	Linear Correction Terms
	Quadratic Correction Terms

	Conclusion

