
Uniform First-Order Threshold Implementations

Tim Beyne, Begül Bilgin

COSIC / ESAT, KULeuven and iMinds, Belgium

August 10, 2016

COSIC



COSIC
Threshold Implementations
Introduction

I Countermeasure against side-channel attacks
I First-order attacks: provably secure
I Higher-order attacks: not in this paper

I Based on secret sharing and multi-party computation
I Input is split into random shares: sharing
I Function is split into shares: realization

I Implementation cost increases with number of shares
I More gates
I More randomness (sometimes)
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Threshold Implementations
Definitions

I x ∈ F2 is split into random shares x1, . . . , xs (“sharing”)

I x = (x1, . . . , xs) is a correct sharing:

x =
s⊕

i=1

xi

I A sharing is uniformly generated if, for all x , every correct
sharing x is equally likely
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COSIC
Threshold Implementations
Definitions

I Unshared Boolean function f : Fn
2 → F2

(x1, . . . , xn) 7→ f (x1, . . . , xn)

I Realization f = (f1, f2, . . . , fsout) with fi : Fn sin
2 → F2

I Correctness

f (x1, . . . , xn) =
sout⊕
i=1

fi (x
1, . . . , xn)

I Noncompleteness: each fi is independent of x ji (∀j , 1 ≤ j ≤ n)

I Vectorial functions: repeat for each coordinate function
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Threshold Implementations
Security guarantees

I Output share does not reveal anything about a uniformly
shared input

I Output f must be uniform when cascading functions
= “uniformity property”

I g ◦ f is secure against first-order attacks if f(x) is uniformly
generated

f

R
eg

is
te

r

gx g(f(x))
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COSIC
Threshold Implementations
Example

I f (x1, x2) = x1x2 (x i = x i1 ⊕ x i2 ⊕ x i3)

I f1 ⊕ f2 ⊕ f3 = (x11 ⊕ x12 ⊕ x13 ) · (x21 ⊕ x22 ⊕ x23 )

f1 = x12x
2
2 ⊕ x12x

2
3 ⊕ x13x

2
2

f2 = x11x
2
3 ⊕ x13x

2
1 ⊕ x13x

2
3

f3 = x11x
2
1 ⊕ x11x

2
2 ⊕ x12x

2
1

(f1, f2, f3)
(x1, x2) 000 001 010 011 100 101 110 111

00 7 0 0 3 0 3 3 0
01 7 0 0 3 0 3 3 0
10 7 0 0 3 0 3 3 0
11 0 5 5 0 5 0 0 1
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Threshold Implementations
Uniformity table

I The uniformity table U has elements Ux ,y
I A realization is uniform iff ∀x , y:

Ux ,y = 2n(sin−1)−m(sout−1) or 0

(with m the number of output bits)

(f1, f2, f3)
(x1, x2) 000 011 101 110 001 010 100 111

00 4 0 0 4 0 4 4 0
01 4 0 0 4 0 4 4 0
10 4 0 0 4 0 4 4 0
11 0 4 4 0 4 0 0 4

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 7



COSIC
Threshold Implementations
Solutions for Uniformity: Remasking

I Adding new randomness (“remasking”)

I Randomness is not free
I Example: Keccak-f [1600] with 3 shares

I 10 bits of randomness per S-box evaluation
I 24 rounds, 320 S-box evaluations per round

f

R
eg

is
te

r

gx g(f(x))
⊕ ⊕ ⊕

r1
r2
(r1 ⊕ r2)
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COSIC
Threshold Implementations
Solutions for Uniformity: Correction Terms

I Adding “correction terms” (CTs) to achieve uniformity

I Add the same term to two output shares
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COSIC
Threshold Implementations
Solutions for Uniformity: Correction Terms

I f (x1, x2) = x1x2 (x i = x i1 ⊕ x i2 ⊕ x i3)

I f1 ⊕ f2 ⊕ f3 = (x11 ⊕ x12 ⊕ x13 ) · (x21 ⊕ x22 ⊕ x23 )

f1 = x12x
2
2 ⊕ x12x

2
3 ⊕ x13x

2
2⊕x13 ⊕ x23

f2 = x11x
2
3 ⊕ x13x

2
1 ⊕ x13x

2
3⊕x13 ⊕ x23

f3 = x11x
2
1 ⊕ x11x

2
2 ⊕ x12x

2
1

(f1, f2, f3)
(x1, x2) 000 011 101 110 001 010 100 111

00 5 0 0 1 0 5 5 0
01 5 0 0 1 0 5 5 0
10 5 0 0 1 0 5 5 0
11 0 3 3 0 7 0 0 3
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Threshold Implementations
Solutions for Uniformity: Correction Terms

I Difficult due to the size of the search space
(4 bit S-box: (230)4 with linear and quadratic CTs)

I Not always possible (more shares might be required)
e.g. no known 3-share uniform realization of Keccak-f [b]
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COSIC
Threshold Implementations
Solutions for Uniformity: Partial Uniformity

I Combination of remasking and correction terms

I If a subset of the output shares is uniform,
only remask the others

I Requires less randomness than remasking
e.g. Keccak-f[1600]: 4 bits / S-box (compare with 10)

I Easier than finding a completely uniform realization

Uniform Not uniform

x1︷ ︸︸ ︷
x11 x12 x13

x2︷ ︸︸ ︷
x21 x22 x23

⊕ ⊕ ⊕
r1 r2 (r1 ⊕ r2)
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COSIC
Threshold Implementations
Solutions for Uniformity: Partial Uniformity

I Find uniform realizations for each coordinate function of f by
iterating over all CTs

I For l = 2 . . .m, check which l-combinations are uniform

I Problems to solve
I Checking uniformity is slow
I Search space of correction terms is large
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Checking Uniformity
Approach

I Here: Boolean functions (one unshared output bit)

I Naive method: compute the uniformity table
(worst-case: 2nsin evaluations of the realization)

I Uniformity table is not random
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Checking Uniformity
Restrictions on the Uniformity Table

I The entries of any row of U are related by the same linear
equations

I For sout = 3 we have as many equations as unknowns
I System of equations has a unique solution
I Any row completely determines U

I Only one row must be checked to check uniformity

I Complexity reduced by factor 2n

I It also follows that

(f1, f2, f3) is uniform ⇐⇒ f1, f2, f3 are balanced

I sout ≥ 4
I Multiple rows necessary
I More complicated restrictions on the uniformity table
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COSIC
Threshold Implementations
Solutions for Uniformity: Partial Uniformity

I Find uniform realizations for each coordinate function of f by
iterating over all CTs

I For l = 2 . . .m, check which l-combinations are uniform

I Problems to solve
I Checking uniformity is slow
I Search space of correction terms is large
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Correction Terms
Linear Correction Terms

I Walsh-Hadamard transform Wfi of fi : Fn (sin−1)
2 → F2

I fi (x)⊕ a · x is balanced if and only if Wfi (a) = 0

I Wfi can be computed in O(n(sin − 1)2(sin−1)n) operations

I (f1 ⊕ a · x, f2 ⊕ b · x, f3 ⊕ (a⊕ b) · x) is uniform if and only if

Wf1(a) = 0 with ai1 = 0

Wf2(b) = 0 with bi2 = 0

Wf3(a⊕ b) = 0 with ai3 = bi3

I Necessary but not sufficient for sout > 3
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Correction Terms
Linear Correction Terms

I For a bent function fi :

∀a ∈ Fn(sin−1)
2 :Wfi (a) 6= 0

I Impossible to find linear corrections

I Avoid bent functions by using nonlinear correction terms

I e.g. F4-multiplier used in some AES implementations
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Finding Uniform Realizations
Overview for quadratic Boolean functions

Realization to make uniform

Bent
shares?

Linear CTs (WHT)

Quadratic CTs

Uniform realization
Note: if sout > 3,
the uniformity of the
result must be checked

No

Yes
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Correction Terms
Quadratic Correction Terms

I Systematic method to avoid bent components for quadratic
Boolean functions

I Matrix Mi of the bilinear form of each share fi
I Correctness:

∑sout
i=1 Mi = M

(M is a block-matrix with sin × sin blocks with values from the
matrix of the bilinear form of f )

I Non-bent: rank (Mi ) < n(sin − 1).

I Find sout matrices Mi such that both conditions are satisfied
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Correction Terms
Quadratic Correction Terms

I There is an invertible T such that M = TNTT with

N =


0 J
J 0

0 J
J 0

. . .
0

 with J =

( 1 ··· 1
...

. . .
...

1 ··· 1

)
∈ Fsin×sin

2

I It is easier to find Ni such that N =
∑sout

i=1Ni with
rank (Ni ) < n(sin − 1)

I Let Mi = TNiT
T (T preserves rank and non-completeness)
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Correction Terms
Quadratic Correction Terms

N =

 0 J
J 0

0 J
J 0

0 J
J 0



=


0 J1
J1 0

0 J′1
J′1 0

0 J′′1
J′′1 0

+


0 J2
J2 0

0 J′2
J′2 0

0 J′′2
J′′2 0

+


0 J3
J3 0

0 J′3
J′3 0

0 J′′3
J′′3 0


with

J1 =
(

0 0 0
0 1 1
0 1 1

)
, J2 =

(
1 0 1
0 0 0
1 0 0

)
, J3 =

(
0 1 0
1 0 0
0 0 0

)
J ′1 =

(
0 0 0
0 0 1
0 1 0

)
, J ′2 =

(
1 0 1
0 0 0
1 0 1

)
, J ′3 =

(
0 1 0
1 1 0
0 0 0

)
J ′′1 =

(
0 0 0
0 0 1
0 1 0

)
, J ′′2 =

(
0 0 1
0 0 0
1 0 1

)
, J ′′3 =

(
1 1 0
1 1 0
0 0 0

)
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Conclusion

I Theoretical results on the uniformity property

I Efficient method to check uniformity
I Systematic search method for

I Linear correction terms
I Quadratic correction terms

I Uniform realizations for most quadratic Boolean functions
with only 3 shares

I Specific examples: 50% randomness reduction for
I F4-multiplier used in some AES implementations
I “Problematic” Q4

300 4-bit permutations

I Future applications: any quadratic function
(higher-degree functions can be decomposed first)
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Thank you for your attention.

Questions?

Uniform First-Order Threshold Implementations Tim Beyne, Begül Bilgin 24


	Threshold Implementations
	Basics
	Uniformity

	Checking Uniformity
	Approach
	Restrictions on the Uniformity Table

	Correction Terms
	Linear Correction Terms
	Quadratic Correction Terms

	Conclusion

