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A�ne Equivalence Problem and Previous Works

Problem (A�ne Equivalence Problem)

For given permutations F, S : Zn
2 ! Zn

2 , find a�ne mappings
A,B : Zn

2 ! Zn
2 satisfying F = B � S �A if they exist.

Naive approach to solve the problem takes O(n3
2

n2+n
) times: 8A,

to check if B = F �A�1 � S�1 is a�ne and invertible.

The A�ne Equivalence Algorithm proposed by Biryukov et al. in
Eurocrypt 2003 recovers both A and B in O(n3

2

2n
) times.

Baek et al. proposed a Specialized A�ne Equivalence Algorithm to
solve the problem with multiple m-bit S-Boxes in

Case 1. With F�1 queries: O(

n
m · n3 · 23m) times.

Case 2. Without F�1 queries:
O(min{ n

m · nm+3 · 22m, n
m · n3 · 23m + n log n · 2n/2}) times.
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A�ne Equivalence Problem and Previous Works

(a) The original
problem

(b) Baek et al.’s
consideration

(c) Our problem: A
with empty m⇥m
blocks

Look-up table sizes: (a) n · 2n = (b) n · 2n >> (c) n
m · n · 2km,

where k blocks are filled in each rows in A in (c).



Our Problem

Problem (Our Specialized A�ne Equivalence Problem)

Let F, ˆS be given n-bit permutations s.t. ˆS is a concatenation of
m-bit S-Boxes for n = m · s. Suppose that there exists a pair of
a�ne maps A,B : Zn

2 ! Zn
2 s.t. F = B � ˆS �A and A has a

certain known structure w.r.t. m.1 Find A0 and B0 s.t.
F = B0 � S �A0 and A0 has the same structure with A.

1We call it as “structured”



Our Problem

Definition (Structured Matrix, Structured A�ne Map)

A matrix L 2 Zn⇥n
2 is called structured w.r.t. m where n = m · s, if

1 L is invertible and

2 defining the s⇥ s matrix ML as

(ML)i,j =

(
0 if (i, j)-th m⇥m block of L is zero

1 Otherwises
, the rows of ML are pairwise distinct.

An a�ne map is called structured w.r.t. m if the linear part of the a�ne
map is structured w.r.t. m.

Figure: Examples of structured matrix



Sketch of Attacks

Step1. WANT:

Once viewing F in a landscape,

We do di↵erential attacks. That is, fixing P1 + P2 = ,
observe F (P1) + F (P2) 2 Zn

2 .
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Observation:

dim{F (P 0
1) + F (P 0

2) | P 0
1 + P 0

2 = P1 + P2} = 2m (⌧ n)

=) Why?: Because of the first column of A.

Moreover, since the di↵erential activates the first column of A, and
the first column of A activates the first and the last column of B
depicted as

, we can see the subspace {F (P 0
1) + F (P 0

2) | P 0
1 + P 0

2 = P1 + P2}

of Zn
2 is generated by of B.
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Fixing P1 + P2 = , we obtain the column space generated

by of B over Z2.

Fixing P3 + P4 = , we obtain the column space generated

by of B over Z2.

By calculating an intersection of two subspaces over Z2 obtained

as above, we achieve a basis of the column space of of B.

()) Repeating this process for
�
n
m

�
times, as a result, we can

decompose B as



Step2. WANT:

Return to bit scale.

Apply AEA to solve the a�ne equivalence problem for



Main Theorem and Comparisons

Theorem (Solving the Specialized A�ne Equivalence Problem)

Let F, ˆS be given n-bit permutations with the same conditions as in the
problem setting. One can solve the specialized a�ne equivalence problem
for F and ˆS in time

5 ·
✓
n

m
· log2

n

m

◆
· n3

+ 5 · n2 · 2m + n ·m2 · 22m

with n
m (2n+ 5 · 2m +m+ 10) chosen plaintexts.

We significantly reduced the complexity of solving a�ne equivalence
problems for the special cases.

We reduced the main terms of complexity proposed by Baek et al.
since we don’t need F�1 calculations.

Even with F�1 oracle, Baek et al. approach requires
O(

n
m · n3 · 23m) time complexity which is larger than ours.



Main Theorem and Comparisons

Example. Considering several sample parameters, required work
factors to solve our problems are as below.

Case 1. n = 128,m = 8

(a)AEA: 2277 , (b)Baek et al. SAEA: 275 , (c)Our Algorithm: 231

Case 2. n = 256,m = 8

(a)AEA: 2536 , (b)Baek et al. SAEA: 2110 , (c)Our Algorithm: 234

Case 3. n = 256,m = 16

(a)AEA: 2536 , (b)Baek et al. SAEA: 2188 , (c)Our Algorithm: 248



Application to White-Box Implementations

What is “White-Box implementation” ?

Goal: Obfuscating secret keys in the software

Applications
iOS upgrades
Digital Rights Management(DRM):
Games, recorded music, newspapers, films, magazines



Brief History of White-Box Cryptography

In this area, it seemed to be hard to construct a WB imp. with a
work factor more than 2

35 and a reasonable storage requirement.

Baek et al. challenged to resolve this problem, proposed a WB imp.
of claimed complexities 275 and 2

110 with storage requirements
16MB and 64MB, respectively. However, the construction is
vulnerable to our attack algorithm so that they couldn’t achieve the
security goals.



Conclusion

For n-bit permutations F and ˆS, the complexity of solving an
instance of the a�ne equivalence problem is highly reduced up
to

5 ·
✓
n

m
· log2

n

m

◆
· n3

+ 5 · n2 · 2m + n ·m2 · 22m,

where ˆS is a concatenation of m-bit S-boxes and the input
a�ne layer is structured with respect to m.

Our algorithm will serve as a useful attack tool for White-Box
implementations. Actually, with our methods, we can extract
the secret key of White-Box AES implementation proposed by
Baek et al. with work factors 232, 233, and 2

34 for
n = 128, 256 and 384, respectively, while claimed security
were 2

75, 2110, and 2

117.



Further Works

To implement the whole attack algorithms

Can we generalize our attack method to solve the original
A�ne Equivalence problems?

To construct a secure White-Box implementations with an
appropriate storage requirement



Thank you for your attention!

Any questions?


