# An Efficient Affine Equivalence Algorithm for Multiple S-Boxes and a Structured Affine Layer

Jung Hee Cheon<sup>1</sup>, Hyunsook Hong<sup>1</sup>, **Joohee Lee**<sup>1</sup>, and Jooyoung Lee<sup>2</sup>

> <sup>1</sup> Seoul National University (SNU), Seoul, Korea <sup>2</sup> KAIST, Daejeon, Korea

> > 2016.08.12.

## Contents

- Affine Equivalence Problem and Previous Works
- Our Problem
- Sketch of Attacks
- Main Theorem and Comparisons
- Application to White-Box Implementations

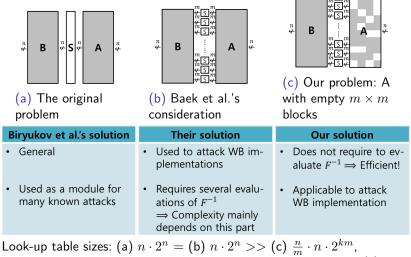
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion

#### Problem (Affine Equivalence Problem)

For given permutations  $F, S : \mathbb{Z}_2^n \to \mathbb{Z}_2^n$ , find affine mappings  $A, B : \mathbb{Z}_2^n \to \mathbb{Z}_2^n$  satisfying  $F = B \circ S \circ A$  if they exist.

#### Problem (Affine Equivalence Problem)

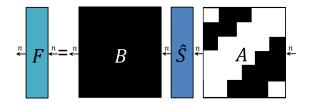

For given permutations  $F, S : \mathbb{Z}_2^n \to \mathbb{Z}_2^n$ , find affine mappings  $A, B : \mathbb{Z}_2^n \to \mathbb{Z}_2^n$  satisfying  $F = B \circ S \circ A$  if they exist.

- Naive approach to solve the problem takes  $O(n^3 2^{n^2+n})$  times:  $\forall A$ , to check if  $B = F \circ A^{-1} \circ S^{-1}$  is affine and invertible.
- The Affine Equivalence Algorithm proposed by Biryukov et al. in Eurocrypt 2003 recovers both A and B in  $O(n^3 2^{2n})$  times.

#### Problem (Affine Equivalence Problem)

For given permutations  $F, S : \mathbb{Z}_2^n \to \mathbb{Z}_2^n$ , find affine mappings  $A, B : \mathbb{Z}_2^n \to \mathbb{Z}_2^n$  satisfying  $F = B \circ S \circ A$  if they exist.

- Naive approach to solve the problem takes O(n<sup>3</sup>2<sup>n<sup>2</sup>+n</sup>) times: ∀A, to check if B = F ∘ A<sup>-1</sup> ∘ S<sup>-1</sup> is affine and invertible.
- The Affine Equivalence Algorithm proposed by Biryukov et al. in Eurocrypt 2003 recovers both A and B in  $O(n^3 2^{2n})$  times.
- Baek et al. proposed a Specialized Affine Equivalence Algorithm to solve the problem with multiple *m*-bit S-Boxes in
  - Case 1. With  $F^{-1}$  queries:  $O(\frac{n}{m} \cdot n^3 \cdot 2^{3m})$  times.
  - Case 2. Without  $F^{-1}$  queries:  $O(\min\{\frac{n}{m} \cdot n^{m+3} \cdot 2^{2m}, \frac{n}{m} \cdot n^3 \cdot 2^{3m} + n\log n \cdot 2^{n/2}\}) \text{ times.}$




where k blocks are filled in each rows in A in (c).

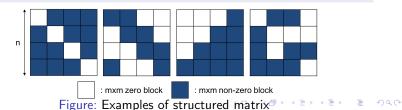
## **Our Problem**

#### Problem (Our Specialized Affine Equivalence Problem)

Let  $F, \hat{S}$  be given *n*-bit permutations s.t.  $\hat{S}$  is a concatenation of *m*-bit S-Boxes for  $n = m \cdot s$ . Suppose that there exists a pair of affine maps  $A, B : \mathbb{Z}_2^n \to \mathbb{Z}_2^n$  s.t.  $F = B \circ \hat{S} \circ A$  and A has a certain known structure w.r.t. m.<sup>1</sup> Find A' and B' s.t.  $F = B' \circ S \circ A'$  and A' has the same structure with A.



<sup>1</sup>We call it as "structured"


# Our Problem

#### Definition (Structured Matrix, Structured Affine Map)

A matrix  $L \in \mathbb{Z}_2^{n \times n}$  is called structured w.r.t. m where  $n = m \cdot s$ , if 1 L is invertible and

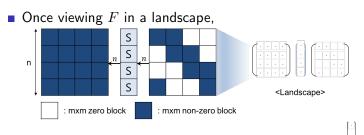
2 defining the 
$$s \times s$$
 matrix  $M_L$  as
$$(M_L)_{i,j} = \begin{cases} 0 & \text{if } (i,j)\text{-th } m \times m \text{ block of } L \text{ is zero} \\ 1 & \text{Otherwises} \end{cases}$$
, the rows of  $M_L$  are pairwise distinct.

An affine map is called structured w.r.t. m if the linear part of the affine map is structured w.r.t. m.



Sketch of Attacks

Step1. WANT:




◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sketch of Attacks

Step1. WANT:





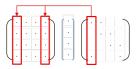
We do differential attacks. That is, fixing  $P_1 + P_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ , observe  $F(P_1) + F(P_2) \in \mathbb{Z}_2^n$ .



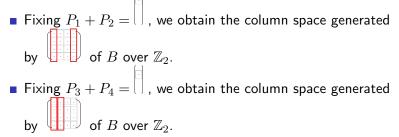
 $\dim\{F(P_1') + F(P_2') \mid P_1' + P_2' = P_1 + P_2\} = 2m \ (\ll n)$ 



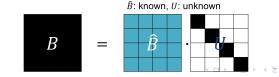
### Observation:


$$\dim \{F(P'_1) + F(P'_2) \mid P'_1 + P'_2 = P_1 + P_2\} = 2m \ (\ll n)$$
$$\implies Why?: \text{Because of the first column} \quad \bigcirc \quad \land A.$$

#### Observation:

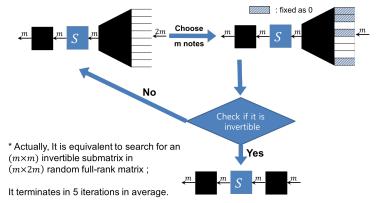

\_

$$\dim \{F(P'_1) + F(P'_2) \mid P'_1 + P'_2 = P_1 + P_2\} = 2m \ (\ll n)$$
  
$$\Rightarrow Why?: \text{Because of the first column} \quad \bigcirc \quad \text{of } A.$$


Moreover, since the differential activates the first column of A, and the first column of A activates the first and the last column of B depicted as



, we can see the subspace  $\{F(P'_1) + F(P'_2) \mid P'_1 + P'_2 = P_1 + P_2\}$ of  $\mathbb{Z}_2^n$  is generated by of B.




By calculating an intersection of two subspaces over  $\mathbb{Z}_2$  obtained as above, we achieve a basis of the column space of (:.) Repeating this process for  $(\frac{n}{m})$  times, as a result, we can decompose B as



Step2. WANT:

Return to bit scale.



Apply AEA to solve the affine equivalence problem for



э

## Main Theorem and Comparisons

#### Theorem (Solving the Specialized Affine Equivalence Problem)

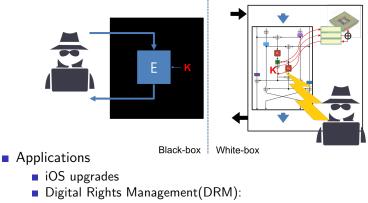
Let  $F, \hat{S}$  be given *n*-bit permutations with the same conditions as in the problem setting. One can solve the specialized affine equivalence problem for F and  $\hat{S}$  in time

$$5 \cdot \left(\frac{n}{m} \cdot \log_2 \frac{n}{m}\right) \cdot n^3 + 5 \cdot n^2 \cdot 2^m + n \cdot m^2 \cdot 2^{2m}$$

with  $\frac{n}{m}(2n+5\cdot 2^m+m+10)$  chosen plaintexts.

We significantly reduced the complexity of solving affine equivalence problems for the special cases.

- We reduced the main terms of complexity proposed by Baek et al. since we don't need *F*<sup>-1</sup> calculations.
- Even with  $F^{-1}$  oracle, Baek et al. approach requires  $O(\frac{n}{m} \cdot n^3 \cdot 2^{3m})$  time complexity which is larger than ours.


**Example.** Considering several sample parameters, required work factors to solve our problems are as below.

(a)AEA:  $2^{536}$  , (b)Baek et al. SAEA:  $2^{188}$  , (c)Our Algorithm:  $2^{48}$ 

## Application to White-Box Implementations

What is "White-Box implementation" ?

Goal: Obfuscating secret keys in the software



Games, recorded music, newspapers, films, magazines

# Brief History of White-Box Cryptography

|                                                                                                                                             |                       |                                                                                                                                                                    | Т | 2002, Chow et al. proposed WB AES/DES imp.                     |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------|
|                                                                                                                                             |                       | 2004, Billet et al. attacked Chow et al. WB AES imp. in $2^{30}$                                                                                                   | - |                                                                |
|                                                                                                                                             |                       | 2007, Wyseur et al. attacked Chow et al. WB DES imp. in $2^{14}$                                                                                                   | + | -                                                              |
|                                                                                                                                             |                       |                                                                                                                                                                    | + | 2009, Xiao and Lai proposed WB AES imp.                        |
|                                                                                                                                             |                       |                                                                                                                                                                    | + | 2010, Karroumi proposed WB AES imp.                            |
|                                                                                                                                             |                       | 2012, Mulder et al. attacked Xiao-Lai<br>WB AES imp. in 2 <sup>32</sup>                                                                                            | - | -                                                              |
|                                                                                                                                             | Chow et a<br>showed K | oint et al. reduced the work factor of<br>I. WB AES imp. up to 2 <sup>22</sup> . They also<br>arroumi's WB AES imp. has the same<br>r with Chow et al. WB AES imp. |   | 2014, Biryukov et al. proposed WB imp.<br>with ASASA structure |
| tha                                                                                                                                         | at, to guara          | t al. attacked ASASA WB and showed<br>htee 2 <sup>64</sup> security, the storage<br>f ASASA WB imp. is >10 TB                                                      |   | -                                                              |
|                                                                                                                                             |                       |                                                                                                                                                                    |   | to construct a WB imp. with a reasonable storage requirement.  |
| vv01 r                                                                                                                                      | V Tacto               |                                                                                                                                                                    |   | reasonable storage requirement.                                |
| Baek et al. challenged to resolve this problem, proposed a WB imp. of claimed complexities $2^{75}$ and $2^{110}$ with storage requirements |                       |                                                                                                                                                                    |   |                                                                |

16MB and 64MB, respectively. However, the construction is vulnerable to our attack algorithm so that they couldn't achieve the security goals. ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Conclusion

• For *n*-bit permutations F and  $\hat{S}$ , the complexity of solving an instance of the affine equivalence problem is highly reduced up to

$$5 \cdot \left(\frac{n}{m} \cdot \log_2 \frac{n}{m}\right) \cdot n^3 + 5 \cdot n^2 \cdot 2^m + n \cdot m^2 \cdot 2^{2m},$$

where  $\hat{S}$  is a concatenation of *m*-bit S-boxes and the input affine layer is structured with respect to *m*.

• Our algorithm will serve as a useful attack tool for White-Box implementations. Actually, with our methods, we can extract the secret key of White-Box AES implementation proposed by Baek et al. with work factors  $2^{32}$ ,  $2^{33}$ , and  $2^{34}$  for n = 128,256 and 384, respectively, while claimed security were  $2^{75}$ ,  $2^{110}$ , and  $2^{117}$ .

## Further Works

- To implement the whole attack algorithms
- Can we generalize our attack method to solve the original Affine Equivalence problems?
- To construct a secure White-Box implementations with an appropriate storage requirement

# Thank you for your attention! Any questions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙