An Efficient Affine Equivalence Algorithm for Multiple S-Boxes and a Structured Affine Layer

Jung Hee Cheon ${ }^{1}$, Hyunsook Hong ${ }^{1}$, Joohee Lee ${ }^{1}$, and Jooyoung Lee ${ }^{2}$
${ }^{1}$ Seoul National University (SNU), Seoul, Korea
${ }^{2}$ KAIST, Daejeon, Korea

$$
\text { 2016. 08. } 12 .
$$

Contents

■ Affine Equivalence Problem and Previous Works

- Our Problem

■ Sketch of Attacks

■ Main Theorem and Comparisons

■ Application to White-Box Implementations
■ Conclusion

Affine Equivalence Problem and Previous Works

Problem (Affine Equivalence Problem)

For given permutations $F, S: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}^{n}$, find affine mappings $A, B: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}^{n}$ satisfying $F=B \circ S \circ A$ if they exist.

Affine Equivalence Problem and Previous Works

Problem (Affine Equivalence Problem)

For given permutations $F, S: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}^{n}$, find affine mappings $A, B: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}^{n}$ satisfying $F=B \circ S \circ A$ if they exist.

■ Naive approach to solve the problem takes $O\left(n^{3} 2^{n^{2}+n}\right)$ times: $\forall A$, to check if $B=F \circ A^{-1} \circ S^{-1}$ is affine and invertible.

- The Affine Equivalence Algorithm proposed by Biryukov et al. in Eurocrypt 2003 recovers both A and B in $O\left(n^{3} 2^{2 n}\right)$ times.

Affine Equivalence Problem and Previous Works

Problem (Affine Equivalence Problem)

For given permutations $F, S: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}^{n}$, find affine mappings $A, B: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}^{n}$ satisfying $F=B \circ S \circ A$ if they exist.

■ Naive approach to solve the problem takes $O\left(n^{3} 2^{n^{2}+n}\right)$ times: $\forall A$, to check if $B=F \circ A^{-1} \circ S^{-1}$ is affine and invertible.

- The Affine Equivalence Algorithm proposed by Biryukov et al. in Eurocrypt 2003 recovers both A and B in $O\left(n^{3} 2^{2 n}\right)$ times.
- Baek et al. proposed a Specialized Affine Equivalence Algorithm to solve the problem with multiple m-bit S -Boxes in
- Case 1. With F^{-1} queries: $O\left(\frac{n}{m} \cdot n^{3} \cdot 2^{3 m}\right)$ times.
- Case 2. Without F^{-1} queries:

$$
O\left(\min \left\{\frac{n}{m} \cdot n^{m+3} \cdot 2^{2 m}, \quad \frac{n}{m} \cdot n^{3} \cdot 2^{3 m}+n \log n \cdot 2^{n / 2}\right\}\right) \text { times. }
$$

Affine Equivalence Problem and Previous Works

(a) The original problem

Biryukov et al.'s solution

- General
- Used as a module for many known attacks

(b) Baek et al.'s consideration

Their solution

- Used to attack WB implementations
- Requires several evaluations of F^{-1}
\Rightarrow Complexity mainly depends on this part

(c) Our problem: A with empty $m \times m$ blocks

Our solution

- Does not require to evaluate $F^{-1} \Rightarrow$ Efficient!
- Applicable to attack WB implementation

Look-up table sizes: (a) $n \cdot 2^{n}=$ (b) $n \cdot 2^{n} \gg$ (c) $\frac{n}{m} \cdot n \cdot 2^{k m}$, where k blocks are filled in each rows in A in (c).

Our Problem

Problem (Our Specialized Affine Equivalence Problem)

Let F, \hat{S} be given n-bit permutations s.t. \hat{S} is a concatenation of m-bit S-Boxes for $n=m \cdot s$. Suppose that there exists a pair of affine maps $A, B: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}^{n}$ s.t. $F=B \circ \hat{S} \circ A$ and A has a certain known structure w.r.t. m. ${ }^{1}$ Find A^{\prime} and B^{\prime} s.t. $F=B^{\prime} \circ S \circ A^{\prime}$ and A^{\prime} has the same structure with A.

[^0]
Our Problem

Definition (Structured Matrix, Structured Affine Map)

A matrix $L \in \mathbb{Z}_{2}^{n \times n}$ is called structured w.r.t. m where $n=m \cdot s$, if
$1 L$ is invertible and
2 defining the $s \times s$ matrix M_{L} as

$$
\left(M_{L}\right)_{i, j}= \begin{cases}0 & \text { if }(i, j) \text {-th } m \times m \text { block of } L \text { is zero } \\ 1 & \text { Otherwises }\end{cases}
$$

, the rows of M_{L} are pairwise distinct.
An affine map is called structured w.r.t. m if the linear part of the affine map is structured w.r.t. m.

Figure: Examples of structured matrix

Sketch of Attacks

Step1. WANT:

$$
\square \cdot \frac{2}{2} \rightarrow \Delta \cdot \sqrt{2}-2
$$

Sketch of Attacks

Step1. WANT:

- Once viewing F in a landscape,

\square : mxm zero block
: mxm non-zero block
We do differential attacks. That is, fixing $P_{1}+P_{2}=\{1$, observe $F\left(P_{1}\right)+F\left(P_{2}\right) \in \mathbb{Z}_{2}^{n}$.
- Observation:

$$
\operatorname{dim}\left\{F\left(P_{1}^{\prime}\right)+F\left(P_{2}^{\prime}\right) \mid P_{1}^{\prime}+P_{2}^{\prime}=P_{1}+P_{2}\right\}=2 m(\ll n)
$$

- Observation:

$$
\operatorname{dim}\left\{F\left(P_{1}^{\prime}\right)+F\left(P_{2}^{\prime}\right) \mid P_{1}^{\prime}+P_{2}^{\prime}=P_{1}+P_{2}\right\}=2 m(\ll n)
$$

- Observation:

$$
\operatorname{dim}\left\{F\left(P_{1}^{\prime}\right)+F\left(P_{2}^{\prime}\right) \mid P_{1}^{\prime}+P_{2}^{\prime}=P_{1}+P_{2}\right\}=2 m(\ll n)
$$

\Longrightarrow Why?: Because of the first column $[\because \cdot]$ of A.

Moreover, since the differential activates the first column of A, and the first column of A activates the first and the last column of B depicted as

$$
(\sqrt{\square}[\sqrt{\square}]
$$

, we can see the subspace $\left\{F\left(P_{1}^{\prime}\right)+F\left(P_{2}^{\prime}\right) \mid P_{1}^{\prime}+P_{2}^{\prime}=P_{1}+P_{2}\right\}$ of \mathbb{Z}_{2}^{n} is generated by \square

■ Fixing $P_{1}+P_{2}=l$, we obtain the column space generated by B over \mathbb{Z}_{2}.

- Fixing $P_{3}+P_{4}=\|$, we obtain the column space generated by H^{\prime} of B over \mathbb{Z}_{2}.
By calculating an intersection of two subspaces over \mathbb{Z}_{2} obtained as above, we achieve a basis of the column space of B.
(\therefore) Repeating this process for $\left(\frac{n}{m}\right)$ times, as a result, we can decompose B as

Step2. WANT:

- Return to bit scale.

- Apply AEA to solve the affine equivalence problem for

Main Theorem and Comparisons

Theorem (Solving the Specialized Affine Equivalence Problem)

Let F, \hat{S} be given n-bit permutations with the same conditions as in the problem setting. One can solve the specialized affine equivalence problem for F and \hat{S} in time

$$
5 \cdot\left(\frac{n}{m} \cdot \log _{2} \frac{n}{m}\right) \cdot n^{3}+5 \cdot n^{2} \cdot 2^{m}+n \cdot m^{2} \cdot 2^{2 m}
$$

with $\frac{n}{m}\left(2 n+5 \cdot 2^{m}+m+10\right)$ chosen plaintexts.
We significantly reduced the complexity of solving affine equivalence problems for the special cases.

- We reduced the main terms of complexity proposed by Baek et al. since we don't need F^{-1} calculations.
- Even with F^{-1} oracle, Baek et al. approach requires $O\left(\frac{n}{m} \cdot n^{3} \cdot 2^{3 m}\right)$ time complexity which is larger than ours.

Main Theorem and Comparisons

Example. Considering several sample parameters, required work factors to solve our problems are as below.

- Case 1. $n=128, m=8$
(a)AEA: 2^{277}, (b)Baek et al. SAEA: 2^{75}, (c)Our Algorithm: 2^{31}
- Case 2. $n=256, m=8$
(a)AEA: 2^{536}, (b)Baek et al. SAEA: 2^{110}, (c)Our Algorithm: 2^{34}
- Case 3. $n=256, m=16$
(a)AEA: 2^{536},
(b)Baek et al. SAEA: 2^{188},
(c)Our Algorithm: 2^{48}

Application to White-Box Implementations

What is "White-Box implementation" ?

- Goal: Obfuscating secret keys in the software

- Applications
- iOS upgrades
- Digital Rights Management(DRM):

Games, recorded music, newspapers, films, magazines

Brief History of White-Box Cryptography

- In this area, it seemed to be hard to construct a WB imp. with a work factor more than 2^{35} and a reasonable storage requirement.
- Baek et al. challenged to resolve this problem, proposed a WB imp. of claimed complexities 2^{75} and 2^{110} with storage requirements 16 MB and 64 MB , respectively. However, the construction is vulnerable to our attack algorithm so that they couldn't achieve the security goals.

Conclusion

- For n-bit permutations F and \hat{S}, the complexity of solving an instance of the affine equivalence problem is highly reduced up to

$$
5 \cdot\left(\frac{n}{m} \cdot \log _{2} \frac{n}{m}\right) \cdot n^{3}+5 \cdot n^{2} \cdot 2^{m}+n \cdot m^{2} \cdot 2^{2 m}
$$

where \hat{S} is a concatenation of m-bit S-boxes and the input affine layer is structured with respect to m.

- Our algorithm will serve as a useful attack tool for White-Box implementations. Actually, with our methods, we can extract the secret key of White-Box AES implementation proposed by Baek et al. with work factors $2^{32}, 2^{33}$, and 2^{34} for $n=128,256$ and 384 , respectively, while claimed security were $2^{75}, 2^{110}$, and 2^{117}.

Further Works

- To implement the whole attack algorithms

■ Can we generalize our attack method to solve the original Affine Equivalence problems?

- To construct a secure White-Box implementations with an appropriate storage requirement

Thank you for your attention! Any questions?

[^0]: ${ }^{1}$ We call it as "structured"

