Fast, uniform scalar multiplication for genus 2 Jacobians
with fast Kummers

Ping Ngai (Brian) Chung Craig Costello Benjamin Smith

University of Chicago
Microsoft Research

INRIA + Laboratoire d'Informatique de I'Ecole polytechnique (LIX)

SAC 2016
St. John's, Canada, 11/08/2016

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 1/20

We want to implement basic cryptosystems
based on the hardness of
the Discrete Logarithm and Diffie-Hellman problems
in some group G.

Especially: Diffie-Hellman Key exchange,
Schnorr and (EC)DSA Signatures, ...

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 2 /20

Group operation in G: @&. Inverse: ©.
We occasionally need to compute isolated Ges.

We mostly need to compute scalar multiplications:

(mP)— [mP:=P®---®P

m times
for Piin G and min Z (with [—m|P = [m|(©P)).

Side channel safety = scalar multiplication must be
uniform and constant-time when the scalar m is secret.

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 3 /20

Smallest and fastest for a given security level:
elliptic curves and genus-2 Jacobians.

For signatures and encryption:
Elliptic: Edwards curves (eg. Ed25519), NIST curves, etc.
Genus 2: Jacobian surfaces.
Comparison: Uniform Genus 2 is hard and slow.

For Dithie—=Hellman:
Elliptic: x-lines of Montgomery curves (eg. Curve25519)
Genus 2: Kummer surfaces (Jacobians modulo £1).

Comparison: Uniform Genus 2 can be faster than elliptic curves.
E.g.: Bos—Costello—Hisil-Lauter (2012)
Bernstein—Chuengsatiansup—Lange-Schwabe (2014)

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 4 /20

C:y? = f(x) with f € F,[x] degree 5 or 6 and squarefree

[N

\/

=4

Unlike elliptic curves, the points do not form a group.
Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 5/ 20

Jacobian: algebraic group J¢ ~ C):
pairs of points on C with pairs {(x,y), (x, —y)} “blown down" to 0.
Negation & : {(x1, 1), (x2, y2)} = {(x1, —y1), (x2, —y2)}

Group law on J¢ induced by
{P1, P} @ {Q1, @} @ {R1, R} =0
whenever Pl, P2, Ql, QQ, Rl, R2 are
the intersection of C with some cubic y = g(x).
Why? 4 points in the plane determine a cubic;

and a cubic y = g(x) intersects C : y*> = f(x) in 6 points
because g(x)? = f(x) has 6 solutions.

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 6 /20

Genus 2 group law: {Py, Py} & {Q1, @} = ©{Ry, Ro} = {51, 5}
P>
| |
| |
| |
| |
P : L S
| |
i i
o A | Q@
: Rx

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 7 /20

Elements {P1, P,}: separate, incompatible representations
for cases where one or both of the P; are at infinity.

Branch-tacular group law {Py, P,} & {Q1, @} = {51, S}
separate special cases for P;, Q; at infinity,
fOF P = P fOF P,' = Qj, fOF {Pl, P2} = {Ql, QQ},

These special cases are never implemented in “record-breaking”
genus 2 implementations, but they're easy to attack in practice.

For elliptic curves, we can always sweep the special cases
under a convenient line to get a uniform group law,
but in genus 2 this is much harder; protection kills performance.

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 8 /20

Now you know why genus 2 Jacobians are painful
candidates for cryptographic groups.

So why is genus 2 fast and safe for Diffie-Hellman?

Because DH doesn’t need a group law,
just scalar multiplication.

So we can “drop signs” and work modulo ©,
on the Kummer surface

Ke = Je/(£1) .
Elliptic curve equivalent: Eg. Curve25519 (Bernstein 2006).

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 9 /20

What a Kummer surface looks like

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 10 / 20

Quotient map x : Jo — K¢ (ie x(P) = £P)

No group law on K¢: x(P) and x(Q) determines
x(P® Q) and x(P © Q), but we can't tell which is which.

Still, for any m € Z we have a “scalar multiplication”
[m] : x(P) — x([m]P) ,
because S[m](P) = [m](©P).

Problem: How do we compute [m]. efficiently, without &7

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 11 /20

Any 3 of x(P), x(Q), x(P & Q), and x(P & Q)
determines the 4th, so we can define

pseudo-addition
xADD : (x(P),x(Q),x(P & Q)) — x(P & Q)
pseudo-doubling
xDBL : x(P) — x([2]P)

Bonus: easier to hide/avoid special cases in xADD than .

—> Evaluate [m]. by combining xADDs and xDBLs
using differential addition chains
(ie. every & has summands with known difference).
Classic example: the Montgomery ladder.

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 12 /20

Algorithm 1 The Montgomery ladder

1. function LADDER(m ZB o mi2i, P)

22 (Ro,R1) < (O¢, P)

3 for i := 3 — 1 down to 0 do

4: if m; =0 then > (In practice, use conditional swaps)
5: (Ro, Rl) — ([Z]Ro, Ro @ Rl)

6 else >mp=1
7 (Ro, R1) < (Ro @ R, [2]R1)

8 end if

9 end for > invariant: (Ro, R1) = ([[m/2'|]P, [[m/2| + 1]P)
10: return Ry > Ry=[m]P, R =[mP&® P

11: end function

For each group operation Ry @ Ry, the difference Ry © Ry is fixed
= trivial adaptation from 7 to K¢

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 13 /20

Algorithm 2 The Montgomery ladder on the Kummer

1. function LADDER(m = Ziﬁ;ol m;2', £P)

2 (x0,x1) < (£0¢,x(P))

3 for i :== 3 — 1 down to 0 do

4 if m; =0 then > (In practice, use conditional swaps)
5: (x0,x1) < (xDBL(xp), xADD(xo, x1, x(P))

6 else

7 (Xo,Xl) — (XADD(Xo,Xl,X(P)),XDBL(X]_))

8 end if

9 end for > invariant: (xp,x1) = (x([|m/2"]]P), x([|m/2"| + 1]P))

10: return xo (= £[m]P)
11: end function

High symmetry of K¢ = fast, vectorizable xADD and xDBL
—> very fast Kummer-based Diffie-Hellman implementations
Eg. Bos—Costello—Hisil-Lauter (2013),
Bernstein—Chuengsatiansup—Lange-Schwabe (2014).
B OGS Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 14 / 20

Kummer multiplication computes x([m]P) from x(P)
—but we need [m]P for signatures...

Mathematically, we threw away the sign:
you can't deduce [m]P from P and x([m]P).

But there's a trick: if you computed x([m]P)
using the Montgomery ladder, then you can!

At the end of the loop, xo = x([m]P) and x; = x([m]P & P);
and P, x(Q), and x(Q & P) uniquely determines @ (for any Q).

Our paper: efficiently computing this in genus 2, with
1D (Montgomery) and 2D (Bernstein) SM algorithms.

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 15 / 20

P, x(Q), and x(P @ Q) determine Q

This is an old trick for elliptic curves: cf. Lopez—Dahab (CHES 99),
Okeya—Sakurai (CHES 01), Brier-Joye (PKC 02).

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 16 / 20

-
Genus 2 group law: {Py, Py} &{Q1, Q} = {51,595}

P

|
|
|
|
|
vy P | 52
|

i i
Q1 S I I @

| | |

| | | |

Choosing { Ty, T} as (the wrong) preimage of x({Q1, Q2})
yields a cubic incompatible with x({S51, S2}).

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 17 /20

So: your fast Kummer implementations can now be easily
upgraded to full Jacobian group implementations.

Fast Diffie—-Hellman code now yields efficient signatures.

Algorithm 3 Montgomery/Kummer-based multiplication on the Jacobian

1: function ScALARMuLTIPLY (m = 3.7\ m;2/, P)

2 (Xo,Xl) < (Og,X(P))

3 for i :== 8 — 1 down to 0 do > Montgomery ladder
4: (Xm; » X=m;) <— (XDBL(Xm,), xADD(xp, x1, X(P))

5 end for o invariant: xo = x([[m/2/]]P), x1 = x([|m/2'| + 1]P)
6: Q < Recover(P, xp, x1) > Q = [m|P
7: return @
8: end function

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 18 / 20

...this isn't just wishful theory.

Our technique was used in Kummer:

efficient Diffie—Hellman and Schnorr
signatures for microcontrollers

(Renes—Schwabe-S.—Batina, CHES 2016)

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John's, 11/08/2016 19 /20

Comparison for 8-bit architecture (AVR ATmega):

Protocol Object kCycles Stack bytes
Diffie—Hellman Curve25519 | 13900 494
pKummer | 9513 (68%) | 99 (20%)
Schnorr signing Ed25519 19048 1473
puKummer | 10404 (55%) | 926 (63%)
Schnorr verifying Ed25519 30777 1226
pKummer | 16241 (53%) | 992 (75%)

(vs. Curve25519: Diill-Haase-Hinterwalder-Hutter-Paar-Sanchez-Schwabe, Ed25519: Nascimento-Lépez-Dahab)

Comparison for 32-bit architecture (ARM Cortex MO):

Multiplication for Object kCycles Stack bytes
Diffie—Hellman Curve25519 | 3590 548
pKummer | 2634 (73%) | 248 (45%)
Schnorr NIST-P256 | 10730 540
pKummer | 2709 (25%) | 968 (179%)

(vs. Curve25519: Diill-Haase-Hinterwalder-Hutter-Paar-Sanchez-Schwabe, NIST-P256: Wenger-Unterluggauer-Werner)

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers

St John's, 11/08/2016 20 / 20

