
Fast, uniform scalar multiplication for genus 2 Jacobians
with fast Kummers

Ping Ngai (Brian) Chung Craig Costello Benjamin Smith

University of Chicago

Microsoft Research

INRIA + Laboratoire d’Informatique de l’École polytechnique (LIX)

SAC 2016
St. John’s, Canada, 11/08/2016

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 1 / 20



Constructive cryptography

We want to implement basic cryptosystems
based on the hardness of

the Discrete Logarithm and Diffie–Hellman problems
in some group G.

Especially: Diffie–Hellman Key exchange,
Schnorr and (EC)DSA Signatures, ...

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 2 / 20



Work to be done
Group operation in G: ⊕. Inverse: 	.

We occasionally need to compute isolated ⊕es.

We mostly need to compute scalar multiplications:

(m,P) 7−→ [m]P := P ⊕ · · · ⊕ P︸ ︷︷ ︸
m times

for P in G and m in Z (with [−m]P = [m](	P)).

Side channel safety =⇒ scalar multiplication must be
uniform and constant-time when the scalar m is secret.

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 3 / 20



...So you want to instantiate a DLP/DHP-based protocol

Smallest and fastest for a given security level:
elliptic curves and genus-2 Jacobians.

For signatures and encryption:
Elliptic: Edwards curves (eg. Ed25519), NIST curves, etc.

Genus 2: Jacobian surfaces.

Comparison: Uniform Genus 2 is hard and slow.

For Diffie–Hellman:
Elliptic: x-lines of Montgomery curves (eg. Curve25519)

Genus 2: Kummer surfaces (Jacobians modulo ±1).

Comparison: Uniform Genus 2 can be faster than elliptic curves.
E.g.: Bos–Costello–Hisil–Lauter (2012)

Bernstein–Chuengsatiansup–Lange–Schwabe (2014)

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 4 / 20



Genus 2 curves

C : y 2 = f (x) with f ∈ Fp[x ] degree 5 or 6 and squarefree

Unlike elliptic curves, the points do not form a group.
Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 5 / 20



Making groups from genus 2 curves

Jacobian: algebraic group JC ∼ C(2):
pairs of points on C with pairs {(x , y), (x ,−y)} “blown down” to 0.

Negation 	 : {(x1, y1), (x2, y2)} 7→ {(x1,−y1), (x2,−y2)}
Group law on JC induced by

{P1,P2} ⊕ {Q1,Q2} ⊕ {R1,R2} = 0
whenever P1,P2,Q1,Q2,R1,R2 are

the intersection of C with some cubic y = g(x).

Why? 4 points in the plane determine a cubic;
and a cubic y = g(x) intersects C : y 2 = f (x) in 6 points

because g(x)2 = f (x) has 6 solutions.

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 6 / 20



Genus 2 group law: {P1,P2} ⊕ {Q1,Q2} = 	{R1,R2} = {S1, S2}

•Q1

• Q2

•
P1

•
P2

• R1

•
R2

•
S1

•
S2

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 7 / 20



Why is genus 2 tricky?

Elements {P1,P2}: separate, incompatible representations
for cases where one or both of the Pi are at infinity.

Branch-tacular group law {P1,P2} ⊕ {Q1,Q2} = {S1, S2}:
separate special cases for Pi , Qi at infinity,

for Pi = Pj , for Pi = Qj , for {P1,P2} = {Q1,Q2}, . . .

These special cases are never implemented in “record-breaking”
genus 2 implementations, but they’re easy to attack in practice.

For elliptic curves, we can always sweep the special cases
under a convenient line to get a uniform group law,

but in genus 2 this is much harder; protection kills performance.

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 8 / 20



Why is Diffie–Hellman different?

Now you know why genus 2 Jacobians are painful
candidates for cryptographic groups.

So why is genus 2 fast and safe for Diffie–Hellman?

Because DH doesn’t need a group law,
just scalar multiplication.

So we can “drop signs” and work modulo 	,
on the Kummer surface

KC := JC/〈±1〉 .
Elliptic curve equivalent: Eg. Curve25519 (Bernstein 2006).

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 9 / 20



What a Kummer surface looks like

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 10 / 20



Moving from JC to the Kummer KC
Quotient map x : JC −→ KC (ie x(P) = ±P)

No group law on KC: x(P) and x(Q) determines
x(P ⊕Q) and x(P 	Q), but we can’t tell which is which.

Still, for any m ∈ Z we have a “scalar multiplication”

[m] : x(P) 7−→ x([m]P) ,

because 	[m](P) = [m](	P).

Problem: How do we compute [m]∗ efficiently, without ⊕?

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 11 / 20



Any 3 of x(P), x(Q), x(P 	 Q), and x(P ⊕ Q)
determines the 4th, so we can define

pseudo-addition
xADD : (x(P), x(Q), x(P 	 Q)) 7−→ x(P ⊕ Q)

pseudo-doubling
xDBL : x(P) 7−→ x([2]P)

Bonus: easier to hide/avoid special cases in xADD than ⊕.

=⇒ Evaluate [m]∗ by combining xADDs and xDBLs
using differential addition chains

(ie. every ⊕ has summands with known difference).
Classic example: the Montgomery ladder.

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 12 / 20



Algorithm 1 The Montgomery ladder

1: function Ladder(m =
∑β−1

i=0 mi2
i , P)

2: (R0,R1)← (OE ,P)
3: for i := β − 1 down to 0 do
4: if mi = 0 then . (In practice, use conditional swaps)
5: (R0,R1)← ([2]R0,R0 ⊕ R1)
6: else . mi = 1
7: (R0,R1)← (R0 ⊕ R1, [2]R1)
8: end if
9: end for . invariant: (R0,R1) = ([bm/2ic]P, [bm/2ic+ 1]P)

10: return R0 . R0 = [m]P, R1 = [m]P ⊕ P
11: end function

For each group operation R0 ⊕ R1, the difference R0 	 R1 is fixed
=⇒ trivial adaptation from JC to KC

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 13 / 20



Algorithm 2 The Montgomery ladder on the Kummer

1: function Ladder(m =
∑β−1

i=0 mi2
i , ±P)

2: (x0, x1)← (±OE , x(P))
3: for i := β − 1 down to 0 do
4: if mi = 0 then . (In practice, use conditional swaps)
5: (x0, x1)← (xDBL(x0), xADD(x0, x1, x(P))
6: else
7: (x0, x1)← (xADD(x0, x1, x(P)), xDBL(x1))
8: end if
9: end for . invariant: (x0, x1) = (x([bm/2ic]P), x([bm/2ic+ 1]P))

10: return x0 (= ±[m]P)
11: end function

High symmetry of KC =⇒ fast, vectorizable xADD and xDBL

=⇒ very fast Kummer-based Diffie–Hellman implementations
Eg. Bos–Costello–Hisil–Lauter (2013),

Bernstein–Chuengsatiansup–Lange–Schwabe (2014).
Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 14 / 20



Pulling a y-rabbit out of an x-hat

Kummer multiplication computes x([m]P) from x(P)
—but we need [m]P for signatures...

Mathematically, we threw away the sign:
you can’t deduce [m]P from P and x([m]P).

But there’s a trick: if you computed x([m]P)
using the Montgomery ladder, then you can!

At the end of the loop, x0 = x([m]P) and x1 = x([m]P ⊕ P);
and P , x(Q), and x(Q ⊕ P) uniquely determines Q (for any Q).

Our paper: efficiently computing this in genus 2, with
1D (Montgomery) and 2D (Bernstein) SM algorithms.

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 15 / 20



P, x(Q), and x(P ⊕ Q) determine Q

This is an old trick for elliptic curves: cf. López–Dahab (CHES 99),
Okeya–Sakurai (CHES 01), Brier–Joye (PKC 02).

•
P

•Q

•
⊖Q

•

•

•P ⊕ Q

•
P ⊖ Q

•
••

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 16 / 20



Genus 2 group law: {P1,P2} ⊕ {Q1,Q2} = {S1, S2}

•Q1

•

T1

• Q2

•T2

•
P1

•
P2

•

•

•
S1

•
S2

•

•

Choosing {T1,T2} as (the wrong) preimage of x({Q1,Q2})
yields a cubic incompatible with x({S1,S2}).

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 17 / 20



So: your fast Kummer implementations can now be easily
upgraded to full Jacobian group implementations.

Fast Diffie–Hellman code now yields efficient signatures.

Algorithm 3 Montgomery/Kummer-based multiplication on the Jacobian

1: function ScalarMultiply(m =
∑β−1

i=0 mi2
i , P)

2: (x0, x1)← (OE , x(P))
3: for i := β − 1 down to 0 do . Montgomery ladder
4: (xmi , x¬mi )← (xDBL(xmi ), xADD(x0, x1, x(P))
5: end for . invariant: x0 = x([bm/2ic]P), x1 = x([bm/2ic+ 1]P)
6: Q ← Recover(P, x0, x1) . Q = [m]P
7: return Q
8: end function

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 18 / 20



Gratuitous cross-promotion

...this isn’t just wishful theory.

Our technique was used in µKummer:

efficient Diffie–Hellman and Schnorr
signatures for microcontrollers

(Renes–Schwabe–S.–Batina, CHES 2016)

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 19 / 20



Comparison for 8-bit architecture (AVR ATmega):

Protocol Object kCycles Stack bytes

Diffie–Hellman
Curve25519 13900 494
µKummer 9513 (68%) 99 (20%)

Schnorr signing
Ed25519 19048 1473
µKummer 10404 (55%) 926 (63%)

Schnorr verifying
Ed25519 30777 1226
µKummer 16241 (53%) 992 (75%)

(vs. Curve25519: Düll-Haase-Hinterwälder-Hutter-Paar-Sánchez-Schwabe, Ed25519: Nascimento-López-Dahab)

Comparison for 32-bit architecture (ARM Cortex M0):

Multiplication for Object kCycles Stack bytes

Diffie–Hellman
Curve25519 3590 548
µKummer 2634 (73%) 248 (45%)

Schnorr
NIST-P256 10730 540
µKummer 2709 (25%) 968 (179%)

(vs. Curve25519: Düll-Haase-Hinterwälder-Hutter-Paar-Sánchez-Schwabe, NIST-P256: Wenger-Unterluggauer-Werner)

Smith (INRIA+X) Genus 2 scalar multiplication from Kummers St John’s, 11/08/2016 20 / 20


