# Fast, uniform scalar multiplication for genus 2 Jacobians with fast Kummers

Ping Ngai (Brian) Chung Craig Costello Benjamin Smith

University of Chicago

Microsoft Research

INRIA + Laboratoire d'Informatique de l'École polytechnique (LIX)

SAC 2016 St. John's, Canada, 11/08/2016

# Constructive cryptography

We want to implement basic cryptosystems based on the hardness of the Discrete Logarithm and Diffie–Hellman problems in some group *G*.

> Especially: Diffie–Hellman Key exchange, Schnorr and (EC)DSA Signatures, ...

# Work to be done

Group operation in  $\mathcal{G}$ :  $\oplus$ . Inverse:  $\ominus$ .

We occasionally need to compute isolated  $\oplus$ es.

We mostly need to compute *scalar multiplications*:

$$(m, P) \mapsto [m]P := \underbrace{P \oplus \cdots \oplus P}_{m \text{ times}}$$

for P in G and m in Z (with  $[-m]P = [m](\ominus P)$ ).

Side channel safety  $\implies$  scalar multiplication must be *uniform* and *constant-time* when the scalar *m* is secret.

### ...So you want to instantiate a DLP/DHP-based protocol

Smallest and fastest for a given security level: elliptic curves and genus-2 Jacobians.

For signatures and encryption:

Elliptic: Edwards curves (eg. Ed25519), NIST curves, etc. Genus 2: Jacobian surfaces.

Comparison: Uniform Genus 2 is hard and slow.

### For Diffie–Hellman:

Elliptic: x-lines of Montgomery curves (eg. Curve25519) Genus 2: Kummer surfaces (Jacobians modulo  $\pm 1$ ). Comparison: Uniform Genus 2 can be faster than elliptic curves. E.g.: Bos-Costello-Hisil-Lauter (2012) Bernstein-Chuengsatiansup-Lange-Schwabe (2014)





Unlike elliptic curves, the points do not form a group.

Smith (INRIA+X)

Genus 2 scalar multiplication from Kummers

St John's, 11/08/2016 5 / 20

## Making groups from genus 2 curves

Jacobian: algebraic group  $\mathcal{J}_{\mathcal{C}} \sim \mathcal{C}^{(2)}$ : pairs of points on C with pairs  $\{(x, y), (x, -y)\}$  "blown down" to 0. Negation  $\ominus$  : { $(x_1, y_1), (x_2, y_2)$ }  $\mapsto$  { $(x_1, -y_1), (x_2, -y_2)$ } Group law on  $\mathcal{J}_{\mathcal{C}}$  induced by  $\{P_1, P_2\} \oplus \{Q_1, Q_2\} \oplus \{R_1, R_2\} = 0$ whenever  $P_1, P_2, Q_1, Q_2, R_1, R_2$  are the intersection of C with some cubic y = g(x). Why? 4 points in the plane determine a cubic;

and a cubic y = g(x) intersects  $C : y^2 = f(x)$  in 6 points because  $g(x)^2 = f(x)$  has 6 solutions.

#### Genus 2 group law: $\{P_1, P_2\} \oplus \{Q_1, Q_2\} = \ominus \{R_1, R_2\} = \{S_1, S_2\}$



# Why is genus 2 tricky?

Elements  $\{P_1, P_2\}$ : separate, *incompatible* representations for cases where one or both of the  $P_i$  are at infinity. Branch-tacular group law  $\{P_1, P_2\} \oplus \{Q_1, Q_2\} = \{S_1, S_2\}$ : separate special cases for  $P_i$ ,  $Q_i$  at infinity, for  $P_i = P_j$ , for  $P_i = Q_j$ , for  $\{P_1, P_2\} = \{Q_1, Q_2\}, \ldots$ These special cases are never implemented in "record-breaking" genus 2 implementations, but they're easy to attack in practice.

For elliptic curves, we can always sweep the special cases under a convenient line to get a uniform group law, but in genus 2 this is much harder; *protection kills performance*.

## Why is Diffie–Hellman different?

Now you know why genus 2 Jacobians are painful candidates for cryptographic groups.

So why is genus 2 fast and safe for Diffie-Hellman?

Because DH *doesn't need a group law*, just scalar multiplication.

So we can "drop signs" and work modulo  $\ominus,$  on the Kummer surface

 $\mathcal{K}_\mathcal{C} := \mathcal{J}_\mathcal{C}/\langle \pm 1 
angle$  .

Elliptic curve equivalent: Eg. Curve25519 (Bernstein 2006).

#### What a Kummer surface looks like



Smith (INRIA+X)

Genus 2 scalar multiplication from Kummers

10 / 20

## Moving from $\mathcal{J}_{\mathcal{C}}$ to the Kummer $\mathcal{K}_{\mathcal{C}}$

Quotient map  $x : \mathcal{J}_{\mathcal{C}} \longrightarrow \mathcal{K}_{\mathcal{C}}$  (ie  $x(P) = \pm P$ )

No group law on  $\mathcal{K}_{\mathcal{C}}$ : x(P) and x(Q) determines  $x(P \oplus Q)$  and  $x(P \ominus Q)$ , but we can't tell which is which. Still, for any  $m \in \mathbb{Z}$  we have a "scalar multiplication"

 $[m]: x(P) \longmapsto x([m]P) ,$ 

because  $\ominus$ [*m*](*P*) = [*m*]( $\ominus$ *P*).

*Problem:* How do we compute  $[m]_*$  efficiently, *without*  $\oplus$ ?

Any 3 of x(P), x(Q),  $x(P \oplus Q)$ , and  $x(P \oplus Q)$ determines the 4th, so we can define pseudo-addition $xADD : (x(P), x(Q), x(P \oplus Q)) \mapsto x(P \oplus Q)$ pseudo-doubling $xDBL : x(P) \mapsto x([2]P)$ 

Bonus: easier to hide/avoid special cases in xADD than  $\oplus$ .

 $\implies \text{Evaluate } [m]_* \text{ by combining xADDs and xDBLs} \\ \text{using differential addition chains} \\ (ie. every \oplus has summands with known difference). \\ \text{Classic example: the Montgomery ladder.} \end{cases}$ 

Smith (INRIA+X)

#### $\label{eq:algorithm 1} \textbf{Algorithm 1} \text{ The Montgomery ladder}$

| 1:  | function LADDER( $m = \sum_{i=0}^{\beta-1} p_i$              | $\frac{1}{2}m_i 2^i, P$                                                            |
|-----|--------------------------------------------------------------|------------------------------------------------------------------------------------|
| 2:  | $(R_0,R_1) \leftarrow (\mathcal{O}_\mathcal{E},\mathcal{P})$ |                                                                                    |
| 3:  | for $i:=eta-1$ down to 0 (                                   | do                                                                                 |
| 4:  | if $m_i = 0$ then                                            | ▷ (In practice, use conditional swaps)                                             |
| 5:  | $(R_0,R_1) \leftarrow ([2]R_0,$                              | $R_0\oplus R_1)$                                                                   |
| 6:  | else                                                         | $\triangleright m_i = 1$                                                           |
| 7:  | $(R_0,R_1) \leftarrow (R_0 \oplus R_0)$                      | $R_1, [2]R_1$ )                                                                    |
| 8:  | end if                                                       |                                                                                    |
| 9:  | end for <pre>&gt; invariant</pre>                            | $:: (R_0, R_1) = ([\lfloor m/2^i \rfloor]P, [\lfloor m/2^i \rfloor + 1]P)$         |
| 10: | return R <sub>0</sub>                                        | $\triangleright \ {\it R}_0 = [m]{\it P}, \ {\it R}_1 = [m]{\it P} \oplus {\it P}$ |
| 11: | end function                                                 |                                                                                    |

For each group operation  $R_0 \oplus R_1$ , the difference  $R_0 \oplus R_1$  is *fixed*  $\implies$  trivial adaptation from  $\mathcal{J}_{\mathcal{C}}$  to  $\mathcal{K}_{\mathcal{C}}$  Algorithm 2 The Montgomery ladder on the Kummer

1: function LADDER(
$$m = \sum_{i=0}^{\beta-1} m_i 2^i, \pm P$$
)  
2:  $(x_0, x_1) \leftarrow (\pm \mathcal{O}_{\mathcal{E}}, x(P))$   
3: for  $i := \beta - 1$  down to 0 do  
4: if  $m_i = 0$  then  $\triangleright$  (In practice, use conditional swaps)  
5:  $(x_0, x_1) \leftarrow (xDBL(x_0), xADD(x_0, x_1, x(P)))$   
6: else  
7:  $(x_0, x_1) \leftarrow (xADD(x_0, x_1, x(P)), xDBL(x_1))$   
8: end if  
9: end for  $\triangleright$  invariant:  $(x_0, x_1) = (x([\lfloor m/2^i \rfloor]P), x([\lfloor m/2^i \rfloor + 1]P)))$   
10: return  $x_0 (= \pm [m]P)$   
11: end function

Smith (INRIA+X)

Genus 2 scalar multiplication from Kummers

### Pulling a y-rabbit out of an x-hat

Kummer multiplication computes x([m]P) from x(P)—but we need [m]P for signatures...

Mathematically, we threw away the sign: you can't deduce [m]P from P and x([m]P).

But there's a trick: if you computed x([m]P) using the Montgomery ladder, then you can!

At the end of the loop,  $x_0 = x([m]P)$  and  $x_1 = x([m]P \oplus P)$ ; and P, x(Q), and  $x(Q \oplus P)$  uniquely determines Q (for any Q). Our paper: efficiently computing this in genus 2, with 1D (Montgomery) and 2D (Bernstein) SM algorithms.

Smith (INRIA+X)

#### P, x(Q), and $x(P \oplus Q)$ determine Q

This is an old trick for elliptic curves: cf. López–Dahab (CHES 99), Okeya–Sakurai (CHES 01), Brier–Joye (PKC 02).





Smith (INRIA+X)

Genus 2 scalar multiplication from Kummers

So: your fast Kummer implementations can now be easily upgraded to full Jacobian group implementations.

Fast Diffie-Hellman code now yields efficient signatures.

Algorithm 3 Montgomery/Kummer-based multiplication on the Jacobian

1: function SCALARMULTIPLY( $m = \sum_{i=0}^{\beta-1} m_i 2^i$ , P)

2: 
$$(x_0, x_1) \leftarrow (\mathcal{O}_{\mathcal{E}}, x(P))$$

- 3: for  $i := \beta 1$  down to 0 do  $\triangleright$  Montgomery ladder
- 4:  $(x_{m_i}, x_{\neg m_i}) \leftarrow (\text{xDBL}(x_{m_i}), \text{xADD}(x_0, x_1, x(P)))$
- 5: end for  $\triangleright$  invariant:  $x_0 = x(\lfloor m/2^i \rfloor P), x_1 = x(\lfloor m/2^i \rfloor + 1]P)$
- $6: \qquad Q \leftarrow \texttt{Recover}(P, x_0, x_1)$ 
  - 7: return Q
  - 8: end function

 $\triangleright Q = [m]P$ 

Gratuitous cross-promotion

...this isn't just wishful theory. Our technique was used in μKummer: efficient Diffie–Hellman *and* Schnorr signatures for microcontrollers (Renes–Schwabe–S.–Batina, CHES 2016)

#### Comparison for 8-bit architecture (AVR ATmega):

| Protocol          | Object       | kCycles     | Stack bytes |
|-------------------|--------------|-------------|-------------|
|                   | Curve25519   | 13900       | 494         |
| Dime-neiman       | $\mu$ Kummer | 9513 (68%)  | 99 (20%)    |
| Cohnorr cigning   | Ed25519      | 19048       | 1473        |
| Schlor signing    | $\mu$ Kummer | 10404 (55%) | 926 (63%)   |
| Schnorr vorifying | Ed25519      | 30777       | 1226        |
|                   | $\mu$ Kummer | 16241 (53%) | 992 (75%)   |

(vs. Curve25519: Düll-Haase-Hinterwälder-Hutter-Paar-Sánchez-Schwabe, Ed25519: Nascimento-López-Dahab)

#### Comparison for 32-bit architecture (ARM Cortex M0):

| Multiplication for | Object       | kCycles    | Stack bytes |
|--------------------|--------------|------------|-------------|
| Diffie–Hellman     | Curve25519   | 3590       | 548         |
|                    | $\mu$ Kummer | 2634 (73%) | 248 (45%)   |
| Schnorr            | NIST-P256    | 10730      | 540         |
| Scillon            | $\mu$ Kummer | 2709 (25%) | 968 (179%)  |

(vs. Curve25519: Düll-Haase-Hinterwälder-Hutter-Paar-Sánchez-Schwabe, NIST-P256: Wenger-Unterluggauer-Werner)