Fast, uniform scalar multiplication for genus 2 Jacobians with fast Kummers

Ping Ngai (Brian) Chung Craig Costello Benjamin Smith

University of Chicago
Microsoft Research
INRIA + Laboratoire d'Informatique de l'École polytechnique (LIX) SAC 2016
St. John's, Canada, 11/08/2016

Constructive cryptography

We want to implement basic cryptosystems based on the hardness of
the Discrete Logarithm and Diffie-Hellman problems in some group \mathcal{G}.

Especially: Diffie-Hellman Key exchange, Schnorr and (EC)DSA Signatures, ...

Work to be done

Group operation in $\mathcal{G}: \oplus$. Inverse: \ominus.
We occasionally need to compute isolated \oplus es.
We mostly need to compute scalar multiplications:

$$
(m, P) \longmapsto[m] P:=\underbrace{P \oplus \cdots \oplus P}_{m \text { times }}
$$

for P in \mathcal{G} and m in \mathbb{Z} (with $[-m] P=[m](\ominus P)$).
Side channel safety \Longrightarrow scalar multiplication must be uniform and constant-time when the scalar m is secret.

...So you want to instantiate a DLP/DHP-based protocol

Smallest and fastest for a given security level: elliptic curves and genus-2 Jacobians.

For signatures and encryption:
Elliptic: Edwards curves (eg. Ed25519), NIST curves, etc.
Genus 2: Jacobian surfaces.
Comparison: Uniform Genus 2 is hard and slow.
For Diffie-Hellman:

Elliptic: x-lines of Montgomery curves (eg. Curve25519)
Genus 2: Kummer surfaces (Jacobians modulo ± 1).
Comparison: Uniform Genus 2 can be faster than elliptic curves.
E.g.: Bos-Costello-Hisil-Lauter (2012)

Bernstein-Chuengsatiansup-Lange-Schwabe (2014)

Genus 2 curves

$\mathcal{C}: y^{2}=f(x)$ with $f \in \mathbb{F}_{p}[x]$ degree 5 or 6 and squarefree

Unlike elliptic curves, the points do not form a group.

Making groups from genus 2 curves

Jacobian: algebraic group $\mathcal{J}_{\mathcal{C}} \sim \mathcal{C}^{(2)}$: pairs of points on \mathcal{C} with pairs $\{(x, y),(x,-y)\}$ "blown down" to 0 .
Negation $\ominus:\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\} \mapsto\left\{\left(x_{1},-y_{1}\right),\left(x_{2},-y_{2}\right)\right\}$
Group law on $\mathcal{J}_{\mathcal{C}}$ induced by
$\left\{P_{1}, P_{2}\right\} \oplus\left\{Q_{1}, Q_{2}\right\} \oplus\left\{R_{1}, R_{2}\right\}=0$ whenever $P_{1}, P_{2}, Q_{1}, Q_{2}, R_{1}, R_{2}$ are the intersection of \mathcal{C} with some cubic $y=g(x)$.

Why? 4 points in the plane determine a cubic; and a cubic $y=g(x)$ intersects $\mathcal{C}: y^{2}=f(x)$ in 6 points because $g(x)^{2}=f(x)$ has 6 solutions.

Genus 2 group law: $\left\{P_{1}, P_{2}\right\} \oplus\left\{Q_{1}, Q_{2}\right\}=\ominus\left\{R_{1}, R_{2}\right\}=\left\{S_{1}, S_{2}\right\}$

Why is genus 2 tricky?

Elements $\left\{P_{1}, P_{2}\right\}$: separate, incompatible representations for cases where one or both of the P_{i} are at infinity.
Branch-tacular group law $\left\{P_{1}, P_{2}\right\} \oplus\left\{Q_{1}, Q_{2}\right\}=\left\{S_{1}, S_{2}\right\}$: separate special cases for P_{i}, Q_{i} at infinity, for $P_{i}=P_{j}$, for $P_{i}=Q_{j}$, for $\left\{P_{1}, P_{2}\right\}=\left\{Q_{1}, Q_{2}\right\}, \ldots$ These special cases are never implemented in "record-breaking" genus 2 implementations, but they're easy to attack in practice.

For elliptic curves, we can always sweep the special cases under a convenient line to get a uniform group law, but in genus 2 this is much harder; protection kills performance.

Why is Diffie-Hellman different?

Now you know why genus 2 Jacobians are painful candidates for cryptographic groups.

So why is genus 2 fast and safe for Diffie-Hellman?
Because DH doesn't need a group law, just scalar multiplication.

So we can "drop signs" and work modulo θ, on the Kummer surface

$$
\mathcal{K}_{\mathcal{C}}:=\mathcal{J}_{\mathcal{C}} /\langle \pm 1\rangle .
$$

Elliptic curve equivalent: Eg. Curve25519 (Bernstein 2006).

What a Kummer surface looks like

Moving from $\mathcal{J}_{\mathcal{C}}$ to the Kummer $\mathcal{K}_{\mathcal{C}}$

Quotient map $x: \mathcal{J}_{\mathcal{C}} \longrightarrow \mathcal{K}_{\mathcal{C}}($ ie $x(P)= \pm P)$
No group law on $\mathcal{K}_{\mathcal{C}}: x(P)$ and $x(Q)$ determines $x(P \oplus Q)$ and $x(P \ominus Q)$, but we can't tell which is which.

Still, for any $m \in \mathbb{Z}$ we have a "scalar multiplication"

$$
[m]: x(P) \longmapsto x([m] P),
$$

because $\ominus[m](P)=[m](\ominus P)$.
Problem: How do we compute $[m]_{*}$ efficiently, without \oplus ?

Any 3 of $x(P), x(Q), x(P \ominus Q)$, and $x(P \oplus Q)$ determines the 4th, so we can define
pseudo-addition

$$
\text { xADD }:(x(P), x(Q), x(P \ominus Q)) \longmapsto x(P \oplus Q)
$$

pseudo-doubling xDBL : $x(P) \longmapsto x([2] P)$
Bonus: easier to hide/avoid special cases in xADD than \oplus.
\Longrightarrow Evaluate $[m]_{*}$ by combining xADDs and xDBLs using differential addition chains
(ie. every \oplus has summands with known difference). Classic example: the Montgomery ladder.

Algorithm 1 The Montgomery ladder
1: function $\operatorname{LadDER}\left(m=\sum_{i=0}^{\beta-1} m_{i} 2^{i}, P\right)$
2: $\quad\left(R_{0}, R_{1}\right) \leftarrow\left(\mathcal{O}_{\mathcal{E}}, P\right)$
3: \quad for $i:=\beta-1$ down to 0 do
4: if $m_{i}=0$ then $\quad \triangleright$ (In practice, use conditional swaps) $\left(R_{0}, R_{1}\right) \leftarrow\left([2] R_{0}, R_{0} \oplus R_{1}\right)$
else

$$
\left(R_{0}, R_{1}\right) \leftarrow\left(R_{0} \oplus R_{1},[2] R_{1}\right)
$$

end if
9: \quad end for
10: return R_{0}

$$
\begin{aligned}
\triangleright \text { invariant: }\left(R_{0}, R_{1}\right) & =\left(\left[\left\lfloor m / 2^{i}\right\rfloor\right] P,\left[\left\lfloor m / 2^{i}\right\rfloor+1\right] P\right) \\
& \triangleright R_{0}=[m] P, R_{1}=[m] P \oplus P
\end{aligned}
$$

11: end function

For each group operation $R_{0} \oplus R_{1}$, the difference $R_{0} \ominus R_{1}$ is fixed \Longrightarrow trivial adaptation from $\mathcal{J}_{\mathcal{C}}$ to $\mathcal{K}_{\mathcal{C}}$

Algorithm 2 The Montgomery ladder on the Kummer

1: function $\operatorname{LADDER}\left(m=\sum_{i=0}^{\beta-1} m_{i} 2^{i}, \pm P\right)$
2: $\quad\left(x_{0}, x_{1}\right) \leftarrow\left(\pm \mathcal{O}_{\mathcal{E}}, x(P)\right)$
3: \quad for $i:=\beta-1$ down to 0 do
4:
5:
6:
7:
8:
9: if $m_{i}=0$ then $\quad \triangleright$ (In practice, use conditional swaps) $\left(x_{0}, x_{1}\right) \leftarrow\left(\operatorname{xDBL}\left(x_{0}\right), \operatorname{xADD}\left(x_{0}, x_{1}, x(P)\right)\right.$ else

$$
\left(x_{0}, x_{1}\right) \leftarrow\left(\operatorname{xADD}\left(x_{0}, x_{1}, x(P)\right), \operatorname{xDBL}\left(x_{1}\right)\right)
$$

end if
end for \triangleright invariant: $\left(x_{0}, x_{1}\right)=\left(x\left(\left[\left\lfloor m / 2^{i}\right\rfloor\right] P\right), x\left(\left[\left\lfloor m / 2^{i}\right\rfloor+1\right] P\right)\right)$
10: \quad return $x_{0}(= \pm[m] P)$

11: end function

High symmetry of $\mathcal{K}_{\mathcal{C}} \Longrightarrow$ fast, vectorizable xADD and xDBL
\Longrightarrow very fast Kummer-based Diffie-Hellman implementations
Eg. Bos-Costello-Hisil-Lauter (2013),
Bernstein-Chuengsatiansup-Lange-Schwabe (2014).

Pulling a y-rabbit out of an x-hat

Kummer multiplication computes $x([m] P)$ from $x(P)$ -but we need [m] P for signatures...
Mathematically, we threw away the sign: you can't deduce $[m] P$ from P and $x([m] P)$. But there's a trick: if you computed $x([m] P)$ using the Montgomery ladder, then you can!
At the end of the loop, $x_{0}=x([m] P)$ and $x_{1}=x([m] P \oplus P)$; and $P, x(Q)$, and $x(Q \oplus P)$ uniquely determines Q (for any Q).

Our paper: efficiently computing this in genus 2 , with 1D (Montgomery) and 2D (Bernstein) SM algorithms.

$$
\underline{P, x(Q), \text { and } x(P \oplus Q) \text { determine } Q}
$$

This is an old trick for elliptic curves: cf. López-Dahab (CHES 99), Okeya-Sakurai (CHES 01), Brier-Joye (PKC 02).

Genus 2 group law: $\left\{P_{1}, P_{2}\right\} \oplus\left\{Q_{1}, Q_{2}\right\}=\left\{S_{1}, S_{2}\right.$

Choosing $\left\{T_{1}, T_{2}\right\}$ as (the wrong) preimage of $x\left(\left\{Q_{1}, Q_{2}\right\}\right)$ yields a cubic incompatible with $x\left(\left\{S_{1}, S_{2}\right\}\right)$.

So: your fast Kummer implementations can now be easily upgraded to full Jacobian group implementations.

Fast Diffie-Hellman code now yields efficient signatures.
Algorithm 3 Montgomery/Kummer-based multiplication on the Jacobian
1: function $\operatorname{ScalarMultiply}\left(m=\sum_{i=0}^{\beta-1} m_{i} 2^{i}, P\right)$
2: $\quad\left(x_{0}, x_{1}\right) \leftarrow\left(\mathcal{O}_{\mathcal{E}}, x(P)\right)$
3: for $i:=\beta-1$ down to 0 do $\quad \triangleright$ Montgomery ladder
4: $\quad\left(x_{m_{i}}, x_{\neg m_{i}}\right) \leftarrow\left(\operatorname{xDBL}\left(x_{m_{i}}\right), \operatorname{xADD}\left(x_{0}, x_{1}, x(P)\right)\right.$
5: end for $\quad \triangleright$ invariant: $x_{0}=x\left(\left[\left\lfloor m / 2^{i}\right\rfloor\right] P\right), x_{1}=x\left(\left[\left\lfloor m / 2^{i}\right\rfloor+1\right] P\right)$
6: $\quad Q \leftarrow \operatorname{Recover}\left(P, x_{0}, x_{1}\right) \quad \triangleright Q=[m] P$
7: return Q
8: end function

Gratuitous cross-promotion

...this isn't just wishful theory.
Our technique was used in μ Kummer: efficient Diffie-Hellman and Schnorr signatures for microcontrollers
(Renes-Schwabe-S.-Batina, CHES 2016)

Comparison for 8-bit architecture (AVR ATmega):

Protocol	Object	kCycles	Stack bytes
Diffie-Hellman	Curve25519	13900	494
	μ Kummer	$9513(68 \%)$	$99(20 \%)$
Schnorr signing	Ed25519	19048	1473
	μ Kummer	$10404(55 \%)$	$926(63 \%)$
Chnorr verifying	Ed25519	30777	1226
	μ Kummer	$16241(53 \%)$	$992(75 \%)$

(vs. Curve25519: Düll-Haase-Hinterwälder-Hutter-Paar-Sánchez-Schwabe, Ed25519: Nascimento-López-Dahab)
Comparison for 32-bit architecture (ARM Cortex M0):

Multiplication for	Object	kCycles	Stack bytes
Diffie-Hellman	Curve25519	3590	548
	μ Kummer	$2634(73 \%)$	$248(45 \%)$
Schnorr	NIST-P256	10730	50
	μ Kummer	$2709(25 \%)$	$968(179 \%)$

(vs. Curve25519: Düll-Haase-Hinterwälder-Hutter-Paar-Sánchez-Schwabe, NIST-P256: Wenger-Unterluggauer-Werner)

