
Fault Attacks Against Lattice-Based Signatures

T. Espitau† P-A. Fouque B. Gérard M. Tibouchi

†Lip6, Sorbonne Universités, Paris

August 12, 2016
SAC – 16

1



Towards postquantum cryptography

▶ Quantum computers would break all currently deployed
public-key crypto: RSA, discrete logs, elliptic curves

▶ Agencies warnings
▶ NSA deprecating Suite B (elliptic curves)
▶ NIST starting postquantum competition

2



Towards postquantum cryptography

▶ In theory, plenty of schemes quantum-resistant
▶ Code-based, hash trees, multivariate crypto, isogenies...
▶ Almost everything possible with lattices

▶ In practice, very few actual implementations
▶ Secure parameters often unclear
▶ Concrete software/hardware implementation papers quite rare
▶ Almost no consideration for implementation attacks

▶ Serious issue for practical postquantum crypto

3



Implementations of lattice-based schemes (I)

▶ Implementation of lattice-based crypto:
Limited and mostly academic

▶ One scheme has “industry” backing and quite a bit of code:
NTRU

▶ NTRUEncrypt, ANSI standard, believed to be okay
▶ NTRUSign is a trainwreck that has been patched and broken

4



Implementations of lattice-based schemes (II)

▶ In terms of practical schemes, other than NTRU, main efforts
on signatures

▶ GLP: improvement of Lyubashevsky signatures, efficient in SW
and HW (CHES’12)

▶ BLISS: improvement of GLP, even better (CRYPTO’13,
CHES’14)

▶ GPV: obtained as part of Ducas, Lyubashevsky, Prest
NTRU-based IBE (AC’14),

▶ PASSSign (ACNS’14), TESLA (LATINCRYPT 14),...

5



Implementation attacks vs provable security

Break a provably secure cryptographic scheme:

Solve a hard computational problem

̸=
Break an implementation

Potentially bypass security proof

“Problem Exists Between Keyboard And Chair”

6



Implementation attacks

▶ Side-channel attacks: Passive physical attacks, exploiting
information leakage

▶ Timing attacks, power analysis, EM attacks, cache attacks,
acoustic attacks...

▶ Fault attacks: Active physical attacks, extract secret
information by tampering with the device to cause errors

▶ Faults on memory: lasers, x-rays...
▶ Faults on computation: variations in supply voltage, external

clock, temperature...

7



BLISS: the basics

▶ Introduced by Ducas, Durmus, Lepoint and Lyubashevsky at
CRYPTO’13

▶ Improvement of Ring-SIS-based scheme of Lyubashevsky

▶ Still kind of “Fiat–Shamir signatures”

8



BLISS: the basics
▶ Defined over R = Z[x]/(xn + 1)

▶ Main improvement: Reduce the size of parameters by Bimodal
Gaussian distributions

9



BLISS: the basics
▶ Defined over R = Z[x]/(xn + 1)

▶ Main improvement: Reduce the size of parameters by Bimodal
Gaussian distributions

Distributio Camelus bactrianus
10



BLISS: key generation

1: function KeyGen()
2: choose f , g as uniform polynomials with exactly d1 = ⌈δ1n⌉

entries in {±1} and d2 = ⌈δ2n⌉ entries in {±2}
3: S = (s1, s2)T ← (f , 2g + 1)T

4: if Nκ(S) ⩾ C2 · 5 · (⌈δ1n⌉+ 4⌈δ2n⌉) · κ then restart
5: if f is not invertible then restart
6: aq = (2g + 1)/f mod q
7: return (pk = A, sk = S) where

A = (a1 = 2aq, q− 2) mod 2q
8: end function

11



BLISS: signature

1: function Sign(µ, pk = A, sk = S)
2: y1, y2 ← Dn

Z,σ ▷ Gaussian sampling
3: u = ζ · a1 · y1 + y2 mod 2q ▷ ζ = 1/(q− 2)
4: c← H(⌊u⌉d mod p, µ) ▷ special hashing
5: choose a random bit b
6: z1 ← y1 + (−1)bs1c
7: z2 ← y2 + (−1)bs2c
8: continue with probability

1/
(
M exp(−∥Sc∥/(2σ2)) cosh(⟨z, Sc⟩/σ2) otherwise restart

9: z†
2 ← (⌊u⌉d − ⌊u− z2⌉d) mod p

10: return (z1, z†
2, c)

11: end function

12



BLISS: verification

1: function Verify(µ, A, (z1, z†
2, c))

2: if ∥(z1|2d · z†
2)∥2 > B2 then reject

3: if ∥(z1|2d · z†
2)∥∞ > B∞ then reject

4: accept iff c = H(⌊ζ · a1 · z1 + ζ · q · c⌉d + z†
2 mod p, µ)

5: end function

13



Let’s break things!

14



BLISS: signature

1: function Sign(µ, pk = A, sk = S)
2: y1, y2 ← Dn

Z,σ ▷ Gaussian sampling
3: u = ζ · a1 · y1 + y2 mod 2q ▷ ζ = 1/(q− 2)
4: c← H(⌊u⌉d mod p, µ) ▷ special hashing
5: choose a random bit b
6: z1 ← y1 + (−1)bs1c
7: z2 ← y2 + (−1)bs2c
8: continue with probability

1/
(
M exp(−∥Sc∥/(2σ2)) cosh(⟨z, Sc⟩/σ2) otherwise restart

9: z†
2 ← (⌊u⌉d − ⌊u− z2⌉d) mod p

10: return (z1, z†
2, c)

11: end function

15



BLISS: signature

1: function Sign(µ, pk = A, sk = S)
2: y1, y2 ← Dn

Z,σ ▷ Gaussian sampling
3: u = ζ · a1 · y1 + y2 mod 2q ▷ ζ = 1/(q− 2)
4: c← H(⌊u⌉d mod p, µ) ▷ special hashing
5: choose a random bit b
6: z1 ← y1 + (−1)bs1c
7: z2 ← y2 + (−1)bs2c
8: continue with probability

1/
(
M exp(−∥Sc∥/(2σ2)) cosh(⟨z, Sc⟩/σ2) otherwise restart

9: z†
2 ← (⌊u⌉d − ⌊u− z2⌉d) mod p

10: return (z1, z†
2, c)

11: end function

15



BLISS: signature

1: function Sign(µ, pk = A, sk = S)
2: y1, y2 ← Dn

Z,σ ▷ Gaussian sampling
3: u = ζ · a1 · y1 + y2 mod 2q ▷ ζ = 1/(q− 2)
4: c← H(⌊u⌉d mod p, µ) ▷ special hashing
5: choose a random bit b
6: z1 ← y1 + (−1)bs1c
7: z2 ← y2 + (−1)bs2c
8: continue with probability

1/
(
M exp(−∥Sc∥/(2σ2)) cosh(⟨z, Sc⟩/σ2) otherwise restart

9: z†
2 ← (⌊u⌉d − ⌊u− z2⌉d) mod p

10: return (z1, z†
2, c)

11: end function

15



Attacking y
▶ y1 (≡discrete Gaussian) ≈ additive mask in

z1 ≡ y1 + (−1)bs1c (mod q)

▶ Sampling: coefficient by coefficient

▶ Use fault injection to abort the sampling early =⇒ faulty
signature with a low-degree y1

▶ Done by attacking:
▶ Branching test of the loop (voltage spike, clock variation...)
▶ Contents of the loop counter (lasers, x-rays...)

16



Attacking y
▶ y1 (≡discrete Gaussian) ≈ additive mask in

z1 ≡ y1 + (−1)bs1c (mod q)

▶ Sampling: coefficient by coefficient

▶ Use fault injection to abort the sampling early =⇒ faulty
signature with a low-degree y1

▶ Done by attacking:
▶ Branching test of the loop (voltage spike, clock variation...)
▶ Contents of the loop counter (lasers, x-rays...)

16



Attacking y
▶ y1 (≡discrete Gaussian) ≈ additive mask in

z1 ≡ y1 + (−1)bs1c (mod q)

▶ Sampling: coefficient by coefficient

▶ Use fault injection to abort the sampling early =⇒ faulty
signature with a low-degree y1

▶ Done by attacking:
▶ Branching test of the loop (voltage spike, clock variation...)
▶ Contents of the loop counter (lasers, x-rays...)

16



Attacking y
▶ y1 (≡discrete Gaussian) ≈ additive mask in

z1 ≡ y1 + (−1)bs1c (mod q)

▶ Sampling: coefficient by coefficient

▶ Use fault injection to abort the sampling early =⇒ faulty
signature with a low-degree y1

▶ Done by attacking:
▶ Branching test of the loop (voltage spike, clock variation...)
▶ Contents of the loop counter (lasers, x-rays...)

16



Attack details (I)

▶ Signature generated with y1 of degree m≪ n
▶ If c invertible (probability (1− 1/q)n ≈ 96%):

v = c−1z1 ≡ c−1y1 + (−1)bs1 (mod q)

WLOG, b = 0 (equivalent keys)
▶ s1 is short =⇒ v very close to lattice

L = Span(qZn, (wi = c−1xi)0⩽i⩽m−1)

▶ dim(L) = n too large to apply lattice reduction
Same relation on subset of coefficients: reduce the dim

17



Attack details (I)

▶ Signature generated with y1 of degree m≪ n
▶ If c invertible (probability (1− 1/q)n ≈ 96%):

v = c−1z1 ≡ c−1y1 + (−1)bs1 (mod q)

WLOG, b = 0 (equivalent keys)
▶ s1 is short =⇒ v very close to lattice

L = Span(qZn, (wi = c−1xi)0⩽i⩽m−1)

▶ dim(L) = n too large to apply lattice reduction
Same relation on subset of coefficients: reduce the dim

17



Attack details (I)

▶ Signature generated with y1 of degree m≪ n
▶ If c invertible (probability (1− 1/q)n ≈ 96%):

v = c−1z1 ≡ c−1y1 + (−1)bs1 (mod q)

WLOG, b = 0 (equivalent keys)
▶ s1 is short =⇒ v very close to lattice

L = Span(qZn, (wi = c−1xi)0⩽i⩽m−1)

▶ dim(L) = n too large to apply lattice reduction
Same relation on subset of coefficients: reduce the dim

17



Attack details (I)

▶ Signature generated with y1 of degree m≪ n
▶ If c invertible (probability (1− 1/q)n ≈ 96%):

v = c−1z1 ≡ c−1y1 + (−1)bs1 (mod q)

WLOG, b = 0 (equivalent keys)
▶ s1 is short =⇒ v very close to lattice

L = Span(qZn, (wi = c−1xi)0⩽i⩽m−1)

▶ dim(L) = n too large to apply lattice reduction
Same relation on subset of coefficients: reduce the dim

17



Attack details (I)

▶ Signature generated with y1 of degree m≪ n
▶ If c invertible (probability (1− 1/q)n ≈ 96%):

v = c−1z1 ≡ c−1y1 + (−1)bs1 (mod q)

WLOG, b = 0 (equivalent keys)
▶ s1 is short =⇒ v very close to lattice

L = Span(qZn, (wi = c−1xi)0⩽i⩽m−1)

▶ dim(L) = n too large to apply lattice reduction
Same relation on subset of coefficients: reduce the dim

17



Attack details (I)

▶ Signature generated with y1 of degree m≪ n
▶ If c invertible (probability (1− 1/q)n ≈ 96%):

v = c−1z1 ≡ c−1y1 + (−1)bs1 (mod q)

WLOG, b = 0 (equivalent keys)
▶ s1 is short =⇒ v very close to lattice

L = Span(qZn, (wi = c−1xi)0⩽i⩽m−1)

▶ dim(L) = n too large to apply lattice reduction
Same relation on subset of coefficients: reduce the dim

17



Attack details (II)
▶ Subset I ⊂ {0, . . . , n− 1} of cardinal ℓ φI : Zn → ZI projection

▶ φI(v) close to the lattice generated by φI(wi) and qZI

If ℓ large enough, difference should be φI(s1).

▶ CVP using Babai nearest plane algorithm. Condition on ℓ to
recover φI(s1):

ℓ + 1 ≳
m + 2 + log

√
δ1+4δ2

log q

1− log
√

2πe(δ1+4δ2)
log q

▶ For BLISS–I and BLISS–II, ℓ ≈ 1.09 ·m
18



Attack details (II)
▶ Subset I ⊂ {0, . . . , n− 1} of cardinal ℓ φI : Zn → ZI projection

▶ φI(v) close to the lattice generated by φI(wi) and qZI

If ℓ large enough, difference should be φI(s1).

▶ CVP using Babai nearest plane algorithm. Condition on ℓ to
recover φI(s1):

ℓ + 1 ≳
m + 2 + log

√
δ1+4δ2

log q

1− log
√

2πe(δ1+4δ2)
log q

▶ For BLISS–I and BLISS–II, ℓ ≈ 1.09 ·m
18



Attack details (II)
▶ Subset I ⊂ {0, . . . , n− 1} of cardinal ℓ φI : Zn → ZI projection

▶ φI(v) close to the lattice generated by φI(wi) and qZI

If ℓ large enough, difference should be φI(s1).

▶ CVP using Babai nearest plane algorithm. Condition on ℓ to
recover φI(s1):

ℓ + 1 ≳
m + 2 + log

√
δ1+4δ2

log q

1− log
√

2πe(δ1+4δ2)
log q

▶ For BLISS–I and BLISS–II, ℓ ≈ 1.09 ·m
18



Attack details (II)
▶ Subset I ⊂ {0, . . . , n− 1} of cardinal ℓ φI : Zn → ZI projection

▶ φI(v) close to the lattice generated by φI(wi) and qZI

If ℓ large enough, difference should be φI(s1).

▶ CVP using Babai nearest plane algorithm. Condition on ℓ to
recover φI(s1):

ℓ + 1 ≳
m + 2 + log

√
δ1+4δ2

log q

1− log
√

2πe(δ1+4δ2)
log q

▶ For BLISS–I and BLISS–II, ℓ ≈ 1.09 ·m
18



Attack details (III)

▶ In practice: Works fine with LLL for m ≲ 60 and with BKZ
with m ≲ 100

▶ Apply the attack for several choices of I to recover all of s1,
and subsequently s2: full key recovery with one faulty
signature!

Fault iteration m = 2 5 10 20 40 60 80 100
Theoretical min dim ℓmin 3 6 11 22 44 66 88 110

Dim ℓ (experimental) 3 6 12 24 50 80 110 140
Reduction algorithm LLL LLL LLL LLL BKZ–20 BKZ–25 BKZ–25 BKZ–25
Success proba. (%) 100 99 100 100 100 100 100 98
Time recovery ℓ coeffs. (s) 0.002 0.005 0.022 0.23 7.3 119 941 33655
Time full key recovery 0.5 s 0.5 s 1 s 5 s 80 s 14 min 80 min 38 h

19



Attack details (III)

▶ In practice: Works fine with LLL for m ≲ 60 and with BKZ
with m ≲ 100

▶ Apply the attack for several choices of I to recover all of s1,
and subsequently s2: full key recovery with one faulty
signature!

Fault iteration m = 2 5 10 20 40 60 80 100
Theoretical min dim ℓmin 3 6 11 22 44 66 88 110

Dim ℓ (experimental) 3 6 12 24 50 80 110 140
Reduction algorithm LLL LLL LLL LLL BKZ–20 BKZ–25 BKZ–25 BKZ–25
Success proba. (%) 100 99 100 100 100 100 100 98
Time recovery ℓ coeffs. (s) 0.002 0.005 0.022 0.23 7.3 119 941 33655
Time full key recovery 0.5 s 0.5 s 1 s 5 s 80 s 14 min 80 min 38 h

19



Attack in a nutshell

▶ Step 1: Fault on the generation of the fresh element y1.

▶ Step 2: Find parts of the secret with multiple CVP instances.

▶ Step 3: Recombine them to do a full key recovery.

Fault iteration m = 2 5 10 20 40 60 80 100
Time full key recovery 0.5 s 0.5 s 1 s 5 s 80 s 14 min 80 min 38 h

20



GPV-Based scheme
▶ Variant of Ducas-Lyubashevsky-Prest based on GPV-style

lattice trapdoors.

▶ Defined once again over R = Z[x]/(xn + 1)

▶ Secret key:

B←
(

Mg −Mf
MG −MF

)
∈ Z2n×2n

for f ← Dn
σ0 , g← Dn

σ0

f · G− g · F = q

21



Sign and Verify

1: function Sign(µ, sk = B)
2: c← H(µ) ∈ Zn

q
3: (y, z)← (c, 0)−GaussianSampler(B, σ, (c, 0)) ▷ y, z

are short and satisfy y + z · h = c mod q
4: return z
5: end function

1: function Verify(µ, pk = h, z)
2: accept iff ∥z∥2 + ∥H(µ)− z · h∥2 ⩽ σ

√
2n

3: end function

22



Sign and Verify

1: function Sign(µ, sk = B)
2: c← H(µ) ∈ Zn

q
3: (y, z)← (c, 0)−GaussianSampler(B, σ, (c, 0)) ▷ y, z

are short and satisfy y + z · h = c mod q
4: return z
5: end function

1: function Verify(µ, pk = h, z)
2: accept iff ∥z∥2 + ∥H(µ)− z · h∥2 ⩽ σ

√
2n

3: end function

22



Gaussian Sampling

1: function GaussianSampler(B, σ, c) ▷ bi (resp. b̃i) are the
rows of B (resp. of its Gram–Schmidt matrix B̃)

2: v← 0
3: for i = 2n down to 1 do
4: c′ ← ⟨c, b̃i⟩/∥b̃i∥22
5: σ′ ← σ/∥b̃i∥2
6: r← DZ,σ′,c′

7: c← c− rbi and v← v + rbi
8: end for
9: return v ▷ v sampled according to the lattice

Gaussian distribution DΛ,σ,c
10: end function

23



Gaussian Sampling

1: function GaussianSampler(B, σ, c) ▷ bi (resp. b̃i) are the
rows of B (resp. of its Gram–Schmidt matrix B̃)

2: v← 0
3: for i = 2n down to 1 do
4: c′ ← ⟨c, b̃i⟩/∥b̃i∥22
5: σ′ ← σ/∥b̃i∥2
6: r← DZ,σ′,c′

7: c← c− rbi and v← v + rbi
8: end for
9: return v ▷ v sampled according to the lattice

Gaussian distribution DΛ,σ,c
10: end function

23



Attacking the Gaussian sampler
▶ Correctly generated signature: element of the form

z = R · f + r · F ∈ Z[x]/(xn + 1)

▶ Faults introduced after m iterations of the generation of r, R:

z = r0xn−1F + r1xn−2F + · · ·+ rm−1xn−mF.

▶ Belongs to lattice :

L = Span(xn−iF)

for 1 ⩽ i ⩽ m.
24



Attacking the Gaussian sampler
▶ Correctly generated signature: element of the form

z = R · f + r · F ∈ Z[x]/(xn + 1)

▶ Faults introduced after m iterations of the generation of r, R:

z = r0xn−1F + r1xn−2F + · · ·+ rm−1xn−mF.

▶ Belongs to lattice :

L = Span(xn−iF)

for 1 ⩽ i ⩽ m.
24



Attacking the Gaussian sampler
▶ Correctly generated signature: element of the form

z = R · f + r · F ∈ Z[x]/(xn + 1)

▶ Faults introduced after m iterations of the generation of r, R:

z = r0xn−1F + r1xn−2F + · · ·+ rm−1xn−mF.

▶ Belongs to lattice :

L = Span(xn−iF)

for 1 ⩽ i ⩽ m.
24



Multiple faulted signatures?

▶ z(1), . . . , z(ℓ) faulty signatures.

▶ With probability ⩾ ∏+∞
k=l−m+1

1
ζ(k) generates L. [Maze,

Rosenthal, Wagner]

▶ SVP of L should be one of the xn−iF for 1 ⩽ i ⩽ m.

=⇒ Full recovery of a basis (ζf, ζg, ζF, ζG) for a ζ = ±xα.
(equivalent keys)

25



Multiple faulted signatures?

▶ z(1), . . . , z(ℓ) faulty signatures.

▶ With probability ⩾ ∏+∞
k=l−m+1

1
ζ(k) generates L. [Maze,

Rosenthal, Wagner]

▶ SVP of L should be one of the xn−iF for 1 ⩽ i ⩽ m.

=⇒ Full recovery of a basis (ζf, ζg, ζF, ζG) for a ζ = ±xα.
(equivalent keys)

25



Multiple faulted signatures?

▶ z(1), . . . , z(ℓ) faulty signatures.

▶ With probability ⩾ ∏+∞
k=l−m+1

1
ζ(k) generates L. [Maze,

Rosenthal, Wagner]

▶ SVP of L should be one of the xn−iF for 1 ⩽ i ⩽ m.

=⇒ Full recovery of a basis (ζf, ζg, ζF, ζG) for a ζ = ±xα.
(equivalent keys)

25



Multiple faulted signatures?

▶ z(1), . . . , z(ℓ) faulty signatures.

▶ With probability ⩾ ∏+∞
k=l−m+1

1
ζ(k) generates L. [Maze,

Rosenthal, Wagner]

▶ SVP of L should be one of the xn−iF for 1 ⩽ i ⩽ m.

=⇒ Full recovery of a basis (ζf, ζg, ζF, ζG) for a ζ = ±xα.
(equivalent keys)

25



In practice

Fault after iteration number m = 2 5 10 20 40 60 80 100
Lattice reduction algorithm LLL LLL LLL LLL LLL LLL BKZ–20 BKZ–20

Success probability for ℓ = m + 1 (%) 75 77 90 93 94 94 95 95
Avg. CPU time for ℓ = m + 1 (s) 0.001 0.003 0.016 0.19 2.1 8.1 21.7 104

Success probability for ℓ = m + 2 (%) 89 95 100 100 99 99 100 100
Avg. CPU time for ℓ = m + 2 (s) 0.001 0.003 0.017 0.19 2.1 8.2 21.6 146

26



Conclusion and countermeasures

▶ Important to investigate implementation attacks on lattice
schemes

▶ Faults against Fiat-Shamir and Hash-And-Sign signatures
▶ Among first fault attacks against non-broken lattice signatures
▶ Both based on early loop abort
▶ One of them recovers the full key with a single faulty sig.
▶ Other one: multiple faulty sig., but still on fault per sig.

27



Conclusion and countermeasures

▶ Check that the loop ran completely (two loop counters)

▶ For y1: check that the result has > (1− ε) · n non zero coeffs.

▶ Alternatively: randomize the order of generation of the
coefficients (still a bit risky)

28



Thank you for your attention!

29


	Introduction
	Implementation attacks on lattice schemes
	The BLISS signature scheme

	Our attacks
	Attack on the Gaussian sampling

	Conclusion and countermeasures

