Fault Attacks Against Lattice-Based Signatures

T. Espitau[†] P-A. Fouque B. Gérard M. Tibouchi

[†]Lip6, Sorbonne Universités, Paris

August 12, 2016 SAC - 16

Towards postquantum cryptography

 Quantum computers *would* break all currently deployed public-key crypto: RSA, discrete logs, elliptic curves

- Agencies warnings
 - NSA deprecating Suite B (elliptic curves)
 - NIST starting postquantum competition

Towards postquantum cryptography

In theory, plenty of schemes quantum-resistant

- Code-based, hash trees, multivariate crypto, isogenies...
- ► Almost everything possible with lattices

► In practice, very few actual implementations

- ► Secure parameters often unclear
- ► Concrete software/hardware implementation papers quite rare
- Almost no consideration for implementation attacks

Serious issue for practical postquantum crypto

Implementations of lattice-based schemes (I)

► Implementation of lattice-based crypto:

Limited and mostly academic

- One scheme has "industry" backing and quite a bit of code: NTRU
 - ► NTRUEncrypt, ANSI standard, believed to be okay
 - ► NTRUSign is a trainwreck that has been patched and broken

Implementations of lattice-based schemes (II)

- In terms of practical schemes, other than NTRU, main efforts on signatures
 - GLP: improvement of Lyubashevsky signatures, efficient in SW and HW (CHES'12)
 - BLISS: improvement of GLP, even better (CRYPTO'13, CHES'14)
 - ► GPV: obtained as part of Ducas, Lyubashevsky, Prest NTRU-based IBE (AC'14),
 - ► PASSSign (ACNS'14), TÉSLA (LATINCRYPT 14),...

Implementation attacks vs provable security

Break a provably secure cryptographic scheme:

Solve a hard computational problem

 \neq

Break an implementation

Potentially bypass security proof

"Problem Exists Between Keyboard And Chair"

Implementation attacks

- Side-channel attacks: Passive physical attacks, exploiting information leakage
 - Timing attacks, power analysis, EM attacks, cache attacks, acoustic attacks...

- Fault attacks: Active physical attacks, extract secret information by tampering with the device to cause errors
 - ► Faults on memory: lasers, x-rays...
 - Faults on computation: variations in supply voltage, external clock, temperature...

BLISS: the basics

 Introduced by Ducas, Durmus, Lepoint and Lyubashevsky at CRYPTO'13

Improvement of Ring-SIS-based scheme of Lyubashevsky

Still kind of "Fiat–Shamir signatures"

BLISS: the basics

• Defined over $\mathcal{R} = \mathbb{Z}[\mathbf{x}]/(\mathbf{x}^n + 1)$

 Main improvement: Reduce the size of parameters by Bimodal Gaussian distributions

BLISS: the basics

• Defined over $\mathcal{R} = \mathbb{Z}[\mathbf{x}]/(\mathbf{x}^n + 1)$

 Main improvement: Reduce the size of parameters by Bimodal Gaussian distributions

Distributio Camelus bactrianus

BLISS: key generation

1: function KeyGen()

- 2: choose \mathbf{f}, \mathbf{g} as uniform polynomials with exactly $d_1 = \lceil \delta_1 n \rceil$ entries in $\{\pm 1\}$ and $d_2 = \lceil \delta_2 n \rceil$ entries in $\{\pm 2\}$
- 3: $\mathbf{S} = (\mathbf{s}_1, \mathbf{s}_2)^T \leftarrow (\mathbf{f}, 2\mathbf{g} + 1)^T$
- 4: **if** $N_{\kappa}(\mathbf{S}) \ge C^2 \cdot 5 \cdot (\lceil \delta_1 n \rceil + 4 \lceil \delta_2 n \rceil) \cdot \kappa$ then restart
- 5: **if f** is not invertible **then restart**

6:
$$\mathbf{a}_q = (2\mathbf{g}+1)/\mathbf{f} \mod q$$

7: return (
$$pk = A, sk = S$$
) where

$$\mathbf{A} = (\mathbf{a}_1 = 2\mathbf{a}_q, q-2) mod 2q$$

8: end function

1:	function SIGN $(\mu, pk = \mathbf{A}, sk = \mathbf{S})$	
2:	$\mathbf{y}_1, \mathbf{y}_2 \leftarrow D^n_{\mathbb{Z},\sigma}$	Gaussian sampling
3:	$\mathbf{u} = \zeta \cdot \mathbf{a}_1 \cdot \mathbf{y}_1 + \mathbf{y}_2 ext{ mod } 2q$	$\rhd \zeta = 1/(q-2)$
4:	$\mathbf{c} \leftarrow \mathit{H}(\lfloor \mathbf{u} ceil_{\mathit{d}} mmod p, \mu)$	special hashing
5:	choose a random bit <i>b</i>	
6:	$\mathbf{z}_1 \gets \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}$	
7:	$\mathbf{z}_2 \leftarrow \mathbf{y}_2 + (-1)^b \mathbf{s}_2 \mathbf{c}$	
8:	continue with probability	
	$1/(M\exp(-\ \mathbf{Sc}\ /(2\sigma^2))\cosh(\langle \mathbf{z},\mathbf{Sc}\rangle))$	$\left \sigma^2 ight)$ otherwise restart
9:	$\mathbf{z}_2^\dagger \leftarrow (\lfloor \mathbf{u} ceil_d - \lfloor \mathbf{u} - \mathbf{z}_2 ceil_d) moded p$)
10:	return $(\mathbf{z_1},\mathbf{z_2^\dagger},\mathbf{c})$	
11:	end function	

BLISS: verification

- 1: function VERIFY $(\mu, \mathbf{A}, (\mathbf{z}_1, \mathbf{z}_2^{\dagger}, \mathbf{c}))$
- 2: **if** $\|(\mathbf{z}_1|2^d\cdot\mathbf{z}_2^\dagger)\|_2 > B_2$ then reject
- 3: **if** $\|(\mathbf{z}_1|2^d \cdot \mathbf{z}_2^{\dagger})\|_{\infty} > B_{\infty}$ **then** reject
- 4: accept iff $\mathbf{c} = H(|\zeta \cdot \mathbf{a}_1 \cdot \mathbf{z}_1 + \zeta \cdot q \cdot \mathbf{c}]_d + \mathbf{z}_2^{\dagger} \mod p, \mu)$
- 5: end function

Let's break things!

1:	function SIGN $(\mu, pk = \mathbf{A}, sk = \mathbf{S})$	
2:	$\mathbf{y}_1, \mathbf{y}_2 \leftarrow D^n_{\mathbb{Z},\sigma}$	Gaussian sampling
3:	$\mathbf{u} = \zeta \cdot \mathbf{a}_1 \cdot \mathbf{y}_1 + \mathbf{y}_2 ext{ mod } 2q$	$\rhd \zeta = 1/(q-2)$
4:	$\mathbf{c} \leftarrow \mathit{H}(\lfloor \mathbf{u} ceil_{\mathit{d}} mmod p, \mu)$	special hashing
5:	choose a random bit <i>b</i>	
6:	$\mathbf{z}_1 \gets \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}$	
7:	$\mathbf{z}_2 \leftarrow \mathbf{y}_2 + (-1)^b \mathbf{s}_2 \mathbf{c}$	
8:	continue with probability	
	$1/(M\exp(-\ \mathbf{Sc}\ /(2\sigma^2))\cosh(\langle \mathbf{z},\mathbf{Sc}\rangle))$	$\left \sigma^2 ight)$ otherwise restart
9:	$\mathbf{z}_2^\dagger \leftarrow (\lfloor \mathbf{u} ceil_d - \lfloor \mathbf{u} - \mathbf{z}_2 ceil_d) moded p$)
10:	return $(\mathbf{z_1},\mathbf{z_2^\dagger},\mathbf{c})$	
11:	end function	

1:	function SIGN $(\mu, pk = \mathbf{A}, sk = \mathbf{S})$	
2:	$\mathbf{y}_1, \mathbf{y}_2 \leftarrow D^n_{\mathbb{Z},\sigma}$	Gaussian sampling
3:	$\mathbf{u} = \zeta \cdot \mathbf{a}_1 \cdot \mathbf{y}_1 + \mathbf{y}_2 model{model}$ and $2q$	$\rhd \zeta = 1/(q-2)$
4:	$\mathbf{c} \leftarrow \mathit{H}(\lfloor \mathbf{u} ceil_{\mathit{d}} mod \mathit{p}, \mu)$	special hashing
5:	choose a random bit <i>b</i>	
6:	$\mathbf{z}_1 \gets \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}$	
7:	$\mathbf{z}_2 \leftarrow \mathbf{y}_2 + (-1)^b \mathbf{s}_2 \mathbf{c}$	
8:	continue with probability	
	$1/(M\exp(-\ \mathbf{Sc}\ /(2\sigma^2))\cosh(\langle \mathbf{z},\mathbf{Sc}\rangle))$	$\langle \sigma^2 angle$ otherwise restart
9:	$\mathbf{z}_2^\dagger \leftarrow (\lfloor \mathbf{u} ceil_d - \lfloor \mathbf{u} - \mathbf{z}_2 ceil_d) mod p$	
10:	return $(\mathbf{z}_1,\mathbf{z}_2^\dagger,\mathbf{c})$	
11:	end function	

1:	function $\operatorname{SIGN}(\mu, pk = \mathbf{A}, \ sk = \mathbf{S})$	
2:	$\mathbf{y}_1, \mathbf{y}_2 \leftarrow D^n_{\mathbb{Z},\sigma}$	Gaussian sampling
3:	$\mathbf{u} = \zeta \cdot \mathbf{a}_1 \cdot \mathbf{y}_1 + \mathbf{y}_2 \ mod \ 2q$	$\triangleright \zeta = 1/(q-2)$
4:	$\mathbf{c} \leftarrow \mathit{H}(\lfloor \mathbf{u} ceil_{\mathit{d}} mmod p, \mu)$	special hashing
5:	choose a random bit <i>b</i>	
6:	$\mathbf{z}_1 \gets \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}$	
7:	$\mathbf{z}_2 \leftarrow \mathbf{y}_2 + (-1)^b \mathbf{s}_2 \mathbf{c}$	
8:	continue with probability	
	$1/(M\exp(-\ \mathbf{Sc}\ /(2\sigma^2))\cosh(\langle \mathbf{z},\mathbf{Sc}\rangle))$	$ angle/\sigma^2)$ otherwise restart $ angle$
9:	$\mathbf{z}_2^\dagger \leftarrow (\lfloor \mathbf{u} ceil_d - \lfloor \mathbf{u} - \mathbf{z}_2 ceil_d) mod p$	
10:	return $(\mathbf{z}_1, \mathbf{z}_2^\dagger, \mathbf{c})$	
11:	end function	

 $\blacktriangleright \ \mathbf{y_1} \ (\equiv \mbox{discrete Gaussian}) \approx \mbox{additive mask in}$

 $\mathbf{z}_1 \equiv \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c} \pmod{q}$

Sampling: coefficient by coefficient

Use fault injection to abort the sampling early signature with a low-degree y1

- Done by attacking:
 - Branching test of the loop (voltage spike, clock variation...
 - Contents of the loop counter (lasers, x-rays...)

• $\mathbf{y}_1 \; (\equiv discrete \; Gaussian) \approx additive \; mask \; in$

 $\mathbf{z}_1 \equiv \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c} \pmod{q}$

► Sampling: coefficient by coefficient

Done by attacking:

- Branching test of the loop (voltage spike, clock variation...
- Contents of the loop counter (lasers, x-rays...)

▶ \mathbf{y}_1 (≡discrete Gaussian) \approx additive mask in

 $\mathbf{z}_1 \equiv \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c} \pmod{q}$

► Sampling: coefficient by coefficient

► Use fault injection to abort the sampling early ⇒ faulty signature with a low-degree y₁

- Done by attacking:
 - Branching test of the loop (voltage spike, clock variation...
 - Contents of the loop counter (lasers, x-rays...)

▶ \mathbf{y}_1 (≡discrete Gaussian) \approx additive mask in

 $\mathbf{z}_1 \equiv \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c} \pmod{q}$

► Sampling: coefficient by coefficient

► Use fault injection to abort the sampling early ⇒ faulty signature with a low-degree y₁

- ► Done by attacking:
 - ▶ Branching test of the loop (voltage spike, clock variation...)
 - Contents of the loop counter (lasers, x-rays...)

▶ Signature generated with y₁ of degree m ≪ n
 ▶ If c invertible (probability (1 − 1/q)ⁿ ≈ 96%):

 $\mathbf{v} = \mathbf{c}^{-1}\mathbf{z}_1 \equiv \mathbf{c}^{-1}\mathbf{y}_1 + (-1)^b \mathbf{s}_1 \pmod{q}$

WLOG, b = 0 *(equivalent keys)* ► s₁ is short ⇒ v very close to lattice

 $L = \operatorname{Span}(q\mathbb{Z}^n, (\mathbf{w}_i = \mathbf{c}^{-1}\mathbf{x}^i)_{0 \leq i \leq m-1})$

- ▶ Signature generated with \mathbf{y}_1 of degree $m \ll n$
- If **c** invertible (probability $(1 1/q)^n \approx 96\%$):

 $\mathbf{v} = \mathbf{c}^{-1}\mathbf{z}_1 \equiv \mathbf{c}^{-1}\mathbf{y}_1 + (-1)^b \mathbf{s}_1 \pmod{q}$

WLOG, b = 0 *(equivalent keys)* ► s₁ is short ⇒ v very close to lattice

 $L = \operatorname{Span}(q\mathbb{Z}^n, (\mathbf{w}_i = \mathbf{c}^{-1}\mathbf{x}^i)_{0 \leq i \leq m-1})$

- ▶ Signature generated with \mathbf{y}_1 of degree $m \ll n$
- If **c** invertible (probability $(1 1/q)^n \approx 96\%$):

 $\mathbf{v} = \mathbf{c}^{-1}\mathbf{z}_1 \equiv \mathbf{c}^{-1}\mathbf{y}_1 + (-1)^b \mathbf{s}_1 \pmod{q}$

WLOG, b = 0 (equivalent keys) is short \implies v very close to lattice

 $L = \operatorname{Span}(q\mathbb{Z}^n, (\mathbf{w}_i = \mathbf{c}^{-1}\mathbf{x}^i)_{0 \leq i \leq m-1})$

- \blacktriangleright Signature generated with \mathbf{y}_1 of degree $m \ll n$
- If **c** invertible (probability $(1 1/q)^n \approx 96\%$):

 $\mathbf{v} = \mathbf{c}^{-1}\mathbf{z}_1 \equiv \mathbf{c}^{-1}\mathbf{y}_1 + (-1)^b \mathbf{s}_1 \pmod{q}$

WLOG, b = 0 (equivalent keys) • s_1 is short $\implies v$ very close to lattice

 $L = \operatorname{Span}(q\mathbb{Z}^n, (\mathbf{w}_i = \mathbf{c}^{-1}\mathbf{x}^i)_{0 \leq i \leq m-1})$

- \blacktriangleright Signature generated with \mathbf{y}_1 of degree $m \ll n$
- If **c** invertible (probability $(1 1/q)^n \approx 96\%$):

 $\mathbf{v} = \mathbf{c}^{-1}\mathbf{z}_1 \equiv \mathbf{c}^{-1}\mathbf{y}_1 + (-1)^b \mathbf{s}_1 \pmod{q}$

WLOG, b=0 (equivalent keys)

 $\blacktriangleright \ \mathbf{s_1} \text{ is short} \Longrightarrow \mathbf{v} \text{ very close to lattice}$

$$L = \operatorname{Span}(q\mathbb{Z}^n, (\mathbf{w}_i = \mathbf{c}^{-1}\mathbf{x}^i)_{0 \leq i \leq m-1})$$

- ▶ Signature generated with \mathbf{y}_1 of degree $m \ll n$
- If **c** invertible (probability $(1 1/q)^n \approx 96\%$):

 $\mathbf{v} = \mathbf{c}^{-1}\mathbf{z}_1 \equiv \mathbf{c}^{-1}\mathbf{y}_1 + (-1)^b \mathbf{s}_1 \pmod{q}$

WLOG, b = 0 (equivalent keys)

 \blacktriangleright s₁ is short \Longrightarrow v very close to lattice

$$L = \operatorname{Span}(q\mathbb{Z}^n, (\mathbf{w}_i = \mathbf{c}^{-1}\mathbf{x}^i)_{0 \leq i \leq m-1})$$

• Subset $I \subset \{0, \ldots, n-1\}$ of cardinal $\ell \varphi_I \colon \mathbb{Z}^n \to \mathbb{Z}^I$ projection

φ_l(v) close to the lattice generated by φ_l(w_i) and qZ^l
 If ℓ large enough, difference should be φ_l(s₁).

► CVP using Babai nearest plane algorithm. Condition on ℓ to recover φ_l(s₁):

$$\ell + 1 \gtrsim \frac{m + 2 + \frac{\log \sqrt{\delta_1 + 4\delta_2}}{\log q}}{1 - \frac{\log \sqrt{2\pi e(\delta_1 + 4\delta_2)}}{\log q}}$$

▶ Subset $I \subset \{0, ..., n-1\}$ of cardinal $\ell \varphi_I : \mathbb{Z}^n \to \mathbb{Z}^I$ projection

 φ_l(v) close to the lattice generated by φ_l(w_i) and qZ^l If ℓ large enough, difference should be φ_l(s₁).

► CVP using Babai nearest plane algorithm. Condition on ℓ to recover φ_l(s₁):

$$\ell + 1 \gtrsim \frac{m + 2 + \frac{\log \sqrt{\delta_1 + 4\delta_2}}{\log q}}{1 - \frac{\log \sqrt{2\pi e(\delta_1 + 4\delta_2)}}{\log q}}$$

• Subset $I \subset \{0, \ldots, n-1\}$ of cardinal $\ell \varphi_I \colon \mathbb{Z}^n \to \mathbb{Z}^I$ projection

 φ_l(v) close to the lattice generated by φ_l(w_i) and qZ^l If ℓ large enough, difference should be φ_l(s₁).

► CVP using Babai nearest plane algorithm. Condition on ℓ to recover φ_l(s₁):

$$\ell+1 \gtrsim rac{m+2+rac{\log\sqrt{\delta_1+4\delta_2}}{\log q}}{1-rac{\log\sqrt{2\pi e(\delta_1+4\delta_2)}}{\log q}}$$

• Subset $I \subset \{0, \ldots, n-1\}$ of cardinal $\ell \varphi_I \colon \mathbb{Z}^n \to \mathbb{Z}^I$ projection

 φ_l(v) close to the lattice generated by φ_l(w_i) and qZ^l If ℓ large enough, difference should be φ_l(s₁).

► CVP using Babai nearest plane algorithm. Condition on ℓ to recover φ_l(s₁):

$$\ell+1 \gtrsim rac{m+2+rac{\log\sqrt{\delta_1+4\delta_2}}{\log q}}{1-rac{\log\sqrt{2\pi e(\delta_1+4\delta_2)}}{\log q}}$$

▶ In practice: Works fine with LLL for $m \lesssim 60$ and with BKZ with $m \lesssim 100$

 Apply the attack for several choices of *I* to recover all of s₁, and subsequently s₂: full key recovery with one faulty signature!

Fault iteration $m=$ Theoretical min dim ℓ_{\min}	2	5	10	20	40	60	80	100
	3	6	11	22	44	66	88	110
Dim ℓ (experimental)	3	6	12	24	50	80	110	140
Reduction algorithm	LLL	LLL	LLL	LLL	BKZ–20	BKZ–25	BKZ–25	BKZ–25
Success proba. (%)	100	99	100	100	100	100	100	98
Time recovery ℓ coeffs. (s)	0.002	0.005	0.022	0.23	7.3	119	941	33655
Time full key recovery	0.5 s	0.5 s	1 s	5 s	80 s	14 min	80 min	38 h

 \blacktriangleright In practice: Works fine with LLL for $m \lesssim 60$ and with BKZ with $m \lesssim 100$

Apply the attack for several choices of *I* to recover all of s₁, and subsequently s₂: full key recovery with one faulty signature!

Fault iteration $m=$ Theoretical min dim ℓ_{\min}	2	5	10	20	40	60	80	100
	3	6	11	22	44	66	88	110
Dim ℓ (experimental)	3	6	12	24	50	80	110	140
Reduction algorithm	LLL	LLL	LLL	LLL	BKZ–20	BKZ–25	BKZ–25	BKZ–25
Success proba. (%)	100	99	100	100	100	100	100	98
Time recovery ℓ coeffs. (s)	0.002	0.005	0.022	0.23	7.3	119	941	33655
Time full key recovery	0.5 s	0.5 s	1 s	5 s	80 s	14 min	80 min	38 h

Attack in a nutshell

• **Step 1**: Fault on the generation of the fresh element y_1 .

Step 2: Find parts of the secret with multiple CVP instances.

Step 3: Recombine them to do a full key recovery.

		20	40	60	80	100
0.5 s	0.5 s	5 s	80 s	14 min	80 min	38 h

GPV-Based scheme

 Variant of Ducas-Lyubashevsky-Prest based on GPV-style lattice trapdoors.

• Defined once again over $\mathcal{R} = \mathbb{Z}[\mathbf{x}]/(\mathbf{x}^n + 1)$

► Secret key:

$$\mathbf{B} \leftarrow egin{pmatrix} \mathbf{M}_{\mathbf{g}} & -\mathbf{M}_{\mathbf{f}} \ \mathbf{M}_{\mathbf{G}} & -\mathbf{M}_{\mathbf{F}} \end{pmatrix} \in \mathbb{Z}^{2n imes 2n}$$

or $\mathbf{f} \leftarrow D^n_{\sigma_0}$, $\mathbf{g} \leftarrow D^n_{\sigma_0}$
 $f \cdot \mathbf{G} - \mathbf{g} \cdot \mathbf{F} = q$

Sign and Verify

- 1: function SIGN $(\mu, sk = \mathbf{B})$
- 2: $\mathbf{c} \leftarrow H(\mu) \in \mathbb{Z}_q^n$
- 3: $(\mathbf{y}, \mathbf{z}) \leftarrow (\mathbf{c}, \mathbf{0}) \text{GAUSSIANSAMPLER}(\mathbf{B}, \sigma, (\mathbf{c}, \mathbf{0})) \triangleright \mathbf{y}, \mathbf{z}$ are short and satisfy $\mathbf{y} + \mathbf{z} \cdot \mathbf{h} = \mathbf{c} \mod q$
- 4: return z
- 5: end function
- 1: function VERIFY $(\mu, pk = \mathbf{h}, \mathbf{z})$
- 2: accept iff $\|\mathbf{z}\|_2 + \|\mathcal{H}(\mu) \mathbf{z} \cdot \mathbf{h}\|_2 \leqslant \sigma \sqrt{2n}$
- 3: end function

Sign and Verify

- 1: function SIGN $(\mu, sk = B)$
- 2: $\mathbf{c} \leftarrow H(\mu) \in \mathbb{Z}_q^n$
- 3: $(\mathbf{y}, \mathbf{z}) \leftarrow (\mathbf{c}, \mathbf{0}) \text{GAUSSIANSAMPLER}(\mathbf{B}, \sigma, (\mathbf{c}, \mathbf{0})) \triangleright \mathbf{y}, \mathbf{z}$ are short and satisfy $\mathbf{y} + \mathbf{z} \cdot \mathbf{h} = \mathbf{c} \mod q$
- 4: return z
- 5: end function
- 1: function VERIFY $(\mu, pk = \mathbf{h}, \mathbf{z})$
- 2: accept iff $\|\mathbf{z}\|_2 + \|\mathcal{H}(\mu) \mathbf{z} \cdot \mathbf{h}\|_2 \leqslant \sigma \sqrt{2n}$
- 3: end function

Gaussian Sampling

- 1: function GAUSSIANSAMPLER($\mathbf{B}, \sigma, \mathbf{c}$) $\triangleright \mathbf{b}_i$ (resp. $\mathbf{\tilde{b}}_i$) are the rows of \mathbf{B} (resp. of its Gram–Schmidt matrix $\mathbf{\tilde{B}}$)
- 2: $\mathbf{v} \leftarrow \mathbf{0}$ 3: for i = 2n down to 1 do 4: $c' \leftarrow \langle \mathbf{c}, \widetilde{\mathbf{b}}_i \rangle / \|\widetilde{\mathbf{b}}_i\|_2^2$ 5: $\sigma' \leftarrow \sigma / \|\widetilde{\mathbf{b}}_i\|_2$ 6: $r \leftarrow D_{\mathbb{Z}, \sigma', c'}$ 7: $\mathbf{c} \leftarrow \mathbf{c} - r\mathbf{b}_i$ and $\mathbf{v} \leftarrow \mathbf{v} + r\mathbf{b}_i$ 8: end for 9: return $\mathbf{v} > \mathbf{v}$ sampled according to the lattice Gaussian distribution $D_{\Lambda, \sigma, \mathbf{c}}$
- 10: end function

Gaussian Sampling

- 1: function GAUSSIANSAMPLER($\mathbf{B}, \sigma, \mathbf{c}$) $\triangleright \mathbf{b}_i$ (resp. $\mathbf{\tilde{b}}_i$) are the rows of \mathbf{B} (resp. of its Gram–Schmidt matrix $\mathbf{\tilde{B}}$)
- 2: $\mathbf{v} \leftarrow \mathbf{0}$ 3: for i = 2n down to 1 do 4: $c' \leftarrow \langle \mathbf{c}, \widetilde{\mathbf{b}}_i \rangle / \|\widetilde{\mathbf{b}}_i\|_2^2$ 5: $\sigma' \leftarrow \sigma / \|\widetilde{\mathbf{b}}_i\|_2$ 6: $r \leftarrow D_{\mathbb{Z},\sigma',c'}$ 7: $\mathbf{c} \leftarrow \mathbf{c} - r\mathbf{b}_i$ and $\mathbf{v} \leftarrow \mathbf{v} + r\mathbf{b}_i$

8: end for

9: return $\mathbf{v} > \mathbf{v}$ sampled according to the lattice Gaussian distribution $D_{\Lambda,\sigma,\mathbf{c}}$ 10: end function

Attacking the Gaussian sampler

Correctly generated signature: element of the form

 $\mathbf{z} = \mathbf{R} \cdot \mathbf{f} + \mathbf{r} \cdot \mathbf{F} \in \mathbb{Z}[\mathbf{x}]/(\mathbf{x}^n + 1)$

► Faults introduced after *m* iterations of the generation of *r*, *R*: $z = r_0 x^{n-1} F + r_1 x^{n-2} F + \dots + r_{m-1} x^{n-m} F.$

Belongs to lattice :

 $L = \operatorname{Span}(\mathbf{x}^{n-i}\mathbf{F})$

for $1 \leq i \leq m$.

Attacking the Gaussian sampler

Correctly generated signature: element of the form

$$\mathbf{z} = \mathbf{R} \cdot \mathbf{f} + \mathbf{r} \cdot \mathbf{F} \in \mathbb{Z}[\mathbf{x}]/(\mathbf{x}^n + 1)$$

• Faults introduced after *m* iterations of the generation of r, R: $\mathbf{z} = r_0 \mathbf{x}^{n-1} \mathbf{F} + r_1 \mathbf{x}^{n-2} \mathbf{F} + \dots + r_{m-1} \mathbf{x}^{n-m} \mathbf{F}.$

$$L = \operatorname{Span}(\mathbf{x}^{n-i}\mathbf{F})$$

Attacking the Gaussian sampler

Correctly generated signature: element of the form

$$\mathbf{z} = \mathbf{R} \cdot \mathbf{f} + \mathbf{r} \cdot \mathbf{F} \in \mathbb{Z}[\mathbf{x}]/(\mathbf{x}^n + 1)$$

► Faults introduced after *m* iterations of the generation of *r*, *R*:

$$\mathbf{z} = r_0 \mathbf{x}^{n-1} \mathbf{F} + r_1 \mathbf{x}^{n-2} \mathbf{F} + \cdots + r_{m-1} \mathbf{x}^{n-m} \mathbf{F}.$$

► Belongs to lattice :

$$L = \operatorname{Span}(\mathbf{x}^{n-i}\mathbf{F})$$

for $1 \leq i \leq m$.

• $\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(\ell)}$ faulty signatures.

With probability ≥ ∏^{+∞}_{k=l−m+1} ¹/_{ζ(k)} generates L. [Maze, Rosenthal, Wagner]

- ► SVP of *L* should be one of the $\mathbf{x}^{n-i}\mathbf{F}$ for $1 \leq i \leq m$.
 - \implies Full recovery of a basis $(\zeta f, \zeta g, \zeta F, \zeta G)$ for a $\zeta = \pm \mathbf{x}^{\alpha}$. (*equivalent keys*)

• $\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(\ell)}$ faulty signatures.

► With probability $\ge \prod_{k=l-m+1}^{+\infty} \frac{1}{\zeta(k)}$ generates *L*. [*Maze*, *Rosenthal*, *Wagner*]

- ▶ SVP of *L* should be one of the $\mathbf{x}^{n-i}\mathbf{F}$ for $1 \leq i \leq m$.
 - $\implies \text{Full recovery of a basis } (\zeta f, \zeta g, \zeta F, \zeta G) \text{ for a } \zeta = \pm \mathbf{x}^{\alpha}.$ (equivalent keys)

• $\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(\ell)}$ faulty signatures.

► With probability $\ge \prod_{k=l-m+1}^{+\infty} \frac{1}{\zeta(k)}$ generates *L*. [*Maze*, *Rosenthal*, *Wagner*]

► SVP of *L* should be one of the $\mathbf{x}^{n-i}\mathbf{F}$ for $1 \leq i \leq m$.

 $\implies \text{Full recovery of a basis } (\zeta f, \zeta g, \zeta F, \zeta G) \text{ for a } \zeta = \pm \mathbf{x}^{\alpha}.$ (equivalent keys)

• $\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(\ell)}$ faulty signatures.

► With probability $\ge \prod_{k=l-m+1}^{+\infty} \frac{1}{\zeta(k)}$ generates *L*. [*Maze, Rosenthal, Wagner*]

▶ SVP of *L* should be one of the $\mathbf{x}^{n-i}\mathbf{F}$ for $1 \leq i \leq m$.

 $\implies \text{Full recovery of a basis } (\zeta f, \zeta g, \zeta F, \zeta G) \text{ for a } \zeta = \pm \mathbf{x}^{\alpha}.$ $(equivalent \ keys)$

In practice

Fault after iteration number $m =$	2	5	10	20	40	60	80	100
Lattice reduction algorithm	LLL	LLL	LLL	LLL	LLL	LLL	BKZ–20	BKZ–20
	75	77	90	93	94	94	95	95
	0.001	0.003	0.016	0.19	2.1	8.1	21.7	104
Success probability for $\ell=m+2$ (%)	89	95	100	100	99	99	100	100
Avg. CPU time for $\ell=m+2$ (s)	0.001	0.003	0.017	0.19	2.1	8.2	21.6	146

Conclusion and countermeasures

Important to investigate implementation attacks on lattice schemes

► Faults against Fiat-Shamir and Hash-And-Sign signatures

- Among first fault attacks against non-broken lattice signatures
- Both based on early loop abort
- ▶ One of them recovers the full key with a single faulty sig.
- ► Other one: multiple faulty sig., but still on fault per sig.

Conclusion and countermeasures

Check that the loop ran completely (two loop counters)

• For y_1 : check that the result has $> (1 - \varepsilon) \cdot n$ non zero coeffs.

 Alternatively: randomize the order of generation of the coefficients (still a bit risky)

Thank you for your attention!

