Fault Attacks Against Lattice-Based Signatures

$\underline{\text { T. Espitau }}{ }^{\dagger}$ P-A. Fouque B. Gérard M. Tibouchi
†Lip6, Sorbonne Universités, Paris

August 12, 2016
SAC - 16

Towards postquantum cryptography

- Quantum computers would break all currently deployed public-key crypto: RSA, discrete logs, elliptic curves
- Agencies warnings
- NSA deprecating Suite B (elliptic curves)
- NIST starting postquantum competition

Towards postquantum cryptography

- In theory, plenty of schemes quantum-resistant
- Code-based, hash trees, multivariate crypto, isogenies...
- Almost everything possible with lattices
- In practice, very few actual implementations
- Secure parameters often unclear
- Concrete software/hardware implementation papers quite rare
- Almost no consideration for implementation attacks
- Serious issue for practical postquantum crypto

Implementations of lattice-based schemes (I)

- Implementation of lattice-based crypto:

Limited and mostly academic

- One scheme has "industry" backing and quite a bit of code: NTRU
- NTRUEncrypt, ANSI standard, believed to be okay
- NTRUSign is a trainwreck that has been patched and broken

Implementations of lattice-based schemes (II)

- In terms of practical schemes, other than NTRU, main efforts on signatures
- GLP: improvement of Lyubashevsky signatures, efficient in SW and HW (CHES'12)
- BLISS: improvement of GLP, even better (CRYPTO'13, CHES'14)
- GPV: obtained as part of Ducas, Lyubashevsky, Prest NTRU-based IBE (AC'14),
- PASSSign (ACNS'14), TESLA (LATINCRYPT 14),...

Implementation attacks vs provable security

Break a provably secure cryptographic scheme:

Solve a hard computational problem

$$
\neq
$$

Break an implementation
Potentially bypass security proof

Implementation attacks

- Side-channel attacks: Passive physical attacks, exploiting information leakage
- Timing attacks, power analysis, EM attacks, cache attacks, acoustic attacks...
- Fault attacks: Active physical attacks, extract secret information by tampering with the device to cause errors
- Faults on memory: lasers, x-rays...
- Faults on computation: variations in supply voltage, external clock, temperature...

BLISS: the basics

- Introduced by Ducas, Durmus, Lepoint and Lyubashevsky at CRYPTO'13
- Improvement of Ring-SIS-based scheme of Lyubashevsky
- Still kind of "Fiat-Shamir signatures"

BLISS: the basics

- Defined over $\mathcal{R}=\mathbb{Z}[\mathrm{x}] /\left(\mathrm{x}^{n}+1\right)$
- Main improvement: Reduce the size of parameters by Bimodal Gaussian distributions

BLISS: the basics

- Defined over $\mathcal{R}=\mathbb{Z}[\mathrm{x}] /\left(\mathrm{x}^{n}+1\right)$
- Main improvement: Reduce the size of parameters by Bimodal Gaussian distributions

Distributio Camelus bactrianus

BLISS: key generation

1: function KEyGEN()

2: \quad choose \mathbf{f}, \mathbf{g} as uniform polynomials with exactly $d_{1}=\left\lceil\delta_{1} n\right\rceil$ entries in $\{ \pm 1\}$ and $d_{2}=\left\lceil\delta_{2} n\right\rceil$ entries in $\{ \pm 2\}$
3: $\quad \mathrm{S}=\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right)^{T} \leftarrow(\mathrm{f}, 2 \mathrm{~g}+1)^{T}$
4: if $N_{\kappa}(\mathrm{S}) \geqslant C^{2} \cdot 5 \cdot\left(\left\lceil\delta_{1} n\right\rceil+4\left\lceil\delta_{2} n\right\rceil\right) \cdot \kappa$ then restart
if f is not invertible then restart
6: $\quad \mathrm{a}_{q}=(2 \mathrm{~g}+1) / \mathrm{f} \bmod q$
return $(p k=\mathbf{A}, s k=\mathbf{S})$ where
$\mathbf{A}=\left(\mathbf{a}_{1}=2 \mathrm{a}_{q}, q-2\right) \bmod 2 q$
8: end function

BLISS: signature

1: function $\operatorname{Sign}(\mu, p k=\mathbf{A}, s k=\mathbf{S})$

```
2: \(\quad \mathrm{y}_{1}, \mathrm{y}_{2} \leftarrow D_{\mathbb{Z}, \sigma}^{n}\)
3: \(\quad \mathrm{u}=\zeta \cdot \mathrm{a}_{1} \cdot \mathrm{y}_{1}+\mathrm{y}_{2} \bmod 2 q\)
4: \(\quad \mathbf{c} \leftarrow H\left(\lfloor\mathbf{u}\rangle_{d} \bmod p, \mu\right)\)
```

\triangleright Gaussian sampling

$$
\triangleright \zeta=1 /(q-2)
$$

\triangleright special hashing

5: choose a random bit b
6: $\quad \mathbf{z}_{1} \leftarrow \mathrm{y}_{1}+(-1)^{b^{\prime}} \mathbf{S}_{1} \mathbf{c}$
7: $\quad \mathrm{z}_{2} \leftarrow \mathrm{y}_{2}+(-1)^{b_{\mathrm{S}_{2}} \mathrm{c}}$
8: continue with probability
$1 /\left(M \exp \left(-\|\mathbf{S c}\| /\left(2 \sigma^{2}\right)\right) \cosh \left(\langle\mathbf{z}, \mathbf{S c}\rangle / \sigma^{2}\right)\right.$ otherwise restart
9: $\quad \mathbf{z}_{2}^{\dagger} \leftarrow\left(\lfloor\mathbf{u}\rceil_{d}-\left\lfloor\mathbf{u}-\mathbf{z}_{2}\right\rceil_{d}\right) \bmod p$
10: return $\left(\mathbf{z}_{1}, \mathbf{z}_{2}^{\dagger}, \mathbf{c}\right)$
11: end function

BLISS: verification

1: function $\operatorname{Verify}\left(\mu, \mathbf{A},\left(\mathbf{z}_{1}, \mathbf{z}_{2}^{\dagger}, \mathbf{c}\right)\right)$
2: if $\left\|\left(\mathbf{z}_{1} \mid 2^{d} \cdot \mathbf{z}_{2}^{\dagger}\right)\right\|_{2}>B_{2}$ then reject
3: \quad if $\left\|\left(z_{1} \mid 2^{d} \cdot \mathbf{z}_{2}^{\dagger}\right)\right\|_{\infty}>B_{\infty}$ then reject
4: \quad accept iff $\mathbf{c}=H\left(\left\lfloor\zeta \cdot \mathbf{a}_{1} \cdot \mathbf{z}_{1}+\zeta \cdot q \cdot \mathbf{c}\right\rceil_{d}+\mathbf{z}_{2}^{\dagger} \bmod p, \mu\right)$
5: end function

Let's break things!

BLISS: signature

1: function $\operatorname{Sign}(\mu, p k=\mathbf{A}, s k=\mathbf{S})$

```
2: \(\quad \mathrm{y}_{1}, \mathrm{y}_{2} \leftarrow D_{\mathbb{Z}, \sigma}^{n}\)
3: \(\quad \mathrm{u}=\zeta \cdot \mathrm{a}_{1} \cdot \mathrm{y}_{1}+\mathrm{y}_{2} \bmod 2 q\)
4: \(\quad \mathbf{c} \leftarrow H\left(\lfloor\mathbf{u}\rangle_{d} \bmod p, \mu\right)\)
```

\triangleright Gaussian sampling

$$
\triangleright \zeta=1 /(q-2)
$$

\triangleright special hashing

5: choose a random bit b
6: $\quad \mathbf{z}_{1} \leftarrow \mathrm{y}_{1}+(-1)^{b^{\prime}} \mathbf{S}_{1} \mathbf{c}$
7: $\quad \mathrm{z}_{2} \leftarrow \mathrm{y}_{2}+(-1)^{b_{\mathrm{S}_{2}} \mathrm{c}}$
8: continue with probability
$1 /\left(M \exp \left(-\|\mathbf{S c}\| /\left(2 \sigma^{2}\right)\right) \cosh \left(\langle\mathbf{z}, \mathbf{S c}\rangle / \sigma^{2}\right)\right.$ otherwise restart
9: $\quad \mathbf{z}_{2}^{\dagger} \leftarrow\left(\lfloor\mathbf{u}\rceil_{d}-\left\lfloor\mathbf{u}-\mathbf{z}_{2}\right\rceil_{d}\right) \bmod p$
10: return $\left(\mathbf{z}_{1}, \mathbf{z}_{2}^{\dagger}, \mathbf{c}\right)$
11: end function

BLISS: signature

1: function $\operatorname{Sign}(\mu, p k=\mathbf{A}, s k=\mathbf{S})$

```
2: \(\quad \mathrm{y}_{1}, \mathrm{y}_{2} \leftarrow D_{\mathbb{Z}, \sigma}^{n}\)
3: \(\quad \mathrm{u}=\zeta \cdot \mathrm{a}_{1} \cdot \mathrm{y}_{1}+\mathrm{y}_{2} \bmod 2 q\)
4: \(\quad \mathbf{c} \leftarrow H\left(\lfloor\mathbf{u}\rangle_{d} \bmod p, \mu\right)\)
5: \(\quad\) choose a random bit \(b\)
6: \(\quad \mathbf{z}_{1} \leftarrow \mathrm{y}_{1}+(-1)^{b_{\mathbf{S}_{1}} \mathbf{c}}\)
7: \(\quad \mathrm{z}_{2} \leftarrow \mathrm{y}_{2}+(-1)^{b_{\mathrm{S}_{2}} \mathrm{c}}\)
```

8: continue with probability
$1 /\left(M \exp \left(-\|\mathbf{S c}\| /\left(2 \sigma^{2}\right)\right) \cosh \left(\langle\mathbf{z}, \mathbf{S c}\rangle / \sigma^{2}\right)\right.$ otherwise restart
9: $\quad \mathbf{z}_{2}^{\dagger} \leftarrow\left(\lfloor\mathbf{u}\rceil_{d}-\left\lfloor\mathbf{u}-\mathbf{z}_{2}\right\rceil_{d}\right) \bmod p$
10: return $\left(\mathbf{z}_{1}, \mathbf{z}_{2}^{\dagger}, \mathbf{c}\right)$
11: end function

BLISS: signature

1: function $\operatorname{SigN}(\mu, p k=\mathbf{A}, s k=\mathbf{S})$
2:
3: $\quad \mathbf{u}=\zeta \cdot \mathbf{a}_{1} \cdot \mathbf{y}_{1}+\mathrm{y}_{2} \bmod 2 q$
4: $\quad \mathbf{c} \leftarrow H\left(\lfloor\mathbf{u}\rceil_{d} \bmod p, \mu\right)$
5: choose a random bit b
6: $\quad \mathbf{z}_{1} \leftarrow \mathrm{y}_{1}+(-1)^{b} \mathbf{S}_{1} \mathbf{c}$
7: $\quad \mathbf{z}_{2} \leftarrow \mathrm{y}_{2}+(-1)^{b} \mathbf{s}_{2} \mathbf{c}$
8: continue with probability
$1 /\left(M \exp \left(-\|\mathbf{S c}\| /\left(2 \sigma^{2}\right)\right) \cosh \left(\langle\mathbf{z}, \mathbf{S c}\rangle / \sigma^{2}\right)\right.$ otherwise restart
9: $\quad \mathbf{z}_{2}^{\dagger} \leftarrow\left(\lfloor\mathbf{u}\rceil_{d}-\left\lfloor\mathbf{u}-\mathbf{z}_{2}\right\rceil d\right) \bmod p$
10: \quad return $\left(\mathbf{z}_{1}, \mathbf{z}_{2}^{\dagger}, \mathbf{c}\right)$
11: end function

Attacking y

- $\mathrm{y}_{1}(\equiv$ discrete Gaussian $) \approx$ additive mask in

$$
\mathrm{z}_{1} \equiv \mathrm{y}_{1}+(-1)^{b} \mathrm{~s}_{1} \mathrm{c} \quad(\bmod q)
$$

Attacking y

> $\mathrm{y}_{1}(\equiv$ discrete Gaussian $) \approx$ additive mask in

$$
\mathrm{z}_{1} \equiv \mathrm{y}_{1}+(-1)^{b} \mathrm{~s}_{1} \mathrm{c} \quad(\bmod q)
$$

- Sampling: coefficient by coefficient

Attacking y

> $\mathrm{y}_{1}(\equiv$ discrete Gaussian $) \approx$ additive mask in

$$
\mathrm{z}_{1} \equiv \mathrm{y}_{1}+(-1)^{b} \mathrm{~s}_{1} \mathrm{c} \quad(\bmod q)
$$

- Sampling: coefficient by coefficient
- Use fault injection to abort the sampling early \Longrightarrow faulty signature with a low-degree y_{1}
> Done by attacking
- Branching test of 1 ne loop (voltage splice clock varation - Contents of the loop counter (lasers, x-rays...)

Attacking y

> $\mathrm{y}_{1}(\equiv$ discrete Gaussian) \approx additive mask in

$$
\mathrm{z}_{1} \equiv \mathrm{y}_{1}+(-1)^{b} \mathrm{~s}_{1} \mathrm{c} \quad(\bmod q)
$$

- Sampling: coefficient by coefficient
- Use fault injection to abort the sampling early \Longrightarrow faulty signature with a low-degree y_{1}
- Done by attacking:
- Branching test of the loop (voltage spike, clock variation...)
- Contents of the loop counter (lasers, x-rays...)

Attack details (I)

- Signature generated with y_{1} of degree $m \ll n$

Attack details (I)

- Signature generated with y_{1} of degree $m \ll n$
- If c invertible (probability $(1-1 / q)^{n} \approx 96 \%$):

$$
\mathbf{v}=\mathrm{c}^{-1} \mathrm{z}_{1} \equiv \mathrm{c}^{-1} \mathrm{y}_{1}+(-1)^{b_{S_{1}}} \quad(\bmod q)
$$

Attack details (I)

- Signature generated with y_{1} of degree $m \ll n$
- If c invertible (probability $(1-1 / q)^{n} \approx 96 \%$):

$$
\mathrm{v}=\mathrm{c}^{-1} \mathrm{z}_{1} \equiv \mathrm{c}^{-1} \mathrm{y}_{1}+(-1)^{b^{\prime}} \mathrm{s}_{1} \quad(\bmod q)
$$

$$
\text { WLOG, } b=0 \text { (equivalent keys) }
$$

Attack details (I)

- Signature generated with y_{1} of degree $m \ll n$
- If c invertible (probability $(1-1 / q)^{n} \approx 96 \%$):

$$
\mathrm{v}=\mathrm{c}^{-1} \mathrm{z}_{1} \equiv \mathrm{c}^{-1} \mathrm{y}_{1}+(-1)^{b} \mathrm{~s}_{1} \quad(\bmod q)
$$

$$
\text { WLOG, } b=0 \text { (equivalent keys) }
$$

> s_{1} is short $\Longrightarrow \mathrm{v}$ very close to lattice

$$
L=\operatorname{Span}\left(q \mathbb{Z}^{n},\left(\mathbf{w}_{i}=\mathrm{c}^{-1} \mathrm{x}^{i}\right)_{0 \leqslant i \leqslant m-1}\right)
$$

$>\operatorname{dim}(L)=n$ too large to apply lattice reduction Same relation on subset of coefficients:

Attack details (I)

- Signature generated with y_{1} of degree $m \ll n$
- If c invertible (probability $(1-1 / q)^{n} \approx 96 \%$):

$$
\mathrm{v}=\mathrm{c}^{-1} \mathrm{z}_{1} \equiv \mathrm{c}^{-1} \mathrm{y}_{1}+(-1)^{b} \mathrm{~s}_{1} \quad(\bmod q)
$$

$$
\text { WLOG, } b=0 \text { (equivalent keys) }
$$

> s_{1} is short $\Longrightarrow \mathrm{v}$ very close to lattice

$$
L=\operatorname{Span}\left(q \mathbb{Z}^{n},\left(\mathbf{w}_{i}=\mathrm{c}^{-1} \mathrm{x}^{i}\right)_{0 \leqslant i \leqslant m-1}\right)
$$

- $\operatorname{dim}(L)=n$ too large to apply lattice reduction

Attack details (I)

- Signature generated with y_{1} of degree $m \ll n$
- If c invertible (probability $(1-1 / q)^{n} \approx 96 \%$):

$$
\mathrm{v}=\mathrm{c}^{-1} \mathrm{z}_{1} \equiv \mathrm{c}^{-1} \mathrm{y}_{1}+(-1)^{b} \mathrm{~s}_{1} \quad(\bmod q)
$$

$$
\text { WLOG, } b=0 \text { (equivalent keys) }
$$

> s_{1} is short $\Longrightarrow \mathrm{v}$ very close to lattice

$$
L=\operatorname{Span}\left(q \mathbb{Z}^{n},\left(\mathbf{w}_{i}=\mathrm{c}^{-1} \mathrm{x}^{i}\right)_{0 \leqslant i \leqslant m-1}\right)
$$

- $\operatorname{dim}(L)=n$ too large to apply lattice reduction

Same relation on subset of coefficients: REDUCE THE DIM

Attack details (II)

- Subset $I \subset\{0, \ldots, n-1\}$ of cardinal $\ell \varphi_{I}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{\prime}$ projection

Attack details (II)

- Subset $I \subset\{0, \ldots, n-1\}$ of cardinal $\ell \varphi_{I}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{\prime}$ projection
- $\varphi_{l}(\mathrm{v})$ close to the lattice generated by $\varphi_{I}\left(\mathrm{w}_{i}\right)$ and $\mathrm{q}^{\prime}{ }^{l}$ If ℓ large enough, difference should be $\varphi_{l}\left(\mathrm{~s}_{1}\right)$.

Attack details (II)

- Subset $I \subset\{0, \ldots, n-1\}$ of cardinal $\ell \varphi_{I}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{I}$ projection
- $\varphi_{I}(\mathrm{v})$ close to the lattice generated by $\varphi_{I}\left(\mathrm{w}_{i}\right)$ and $\mathrm{q}^{\prime}{ }^{\prime}$ If ℓ large enough, difference should be $\varphi_{l}\left(\mathrm{~s}_{1}\right)$.
- CVP using Babai nearest plane algorithm. Condition on ℓ to recover $\varphi_{l}\left(\mathrm{~s}_{1}\right)$:

$$
\ell+1 \gtrsim \frac{m+2+\frac{\log \sqrt{\delta_{1}+4 \delta_{2}}}{\log q}}{1-\frac{\log \sqrt{2 \pi e\left(\delta_{1}+4 \delta_{2}\right)}}{\log q}}
$$

Attack details (II)

- Subset $I \subset\{0, \ldots, n-1\}$ of cardinal $\ell \varphi_{I}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{I}$ projection
- $\varphi_{I}(\mathrm{v})$ close to the lattice generated by $\varphi_{I}\left(\mathrm{w}_{i}\right)$ and $\mathrm{q}^{\prime}{ }^{\prime}$ If ℓ large enough, difference should be $\varphi_{l}\left(\mathrm{~s}_{1}\right)$.
- CVP using Babai nearest plane algorithm. Condition on ℓ to recover $\varphi_{l}\left(\mathrm{~s}_{1}\right)$:

$$
\ell+1 \gtrsim \frac{m+2+\frac{\log \sqrt{\delta_{1}+4 \delta_{2}}}{\log q}}{1-\frac{\log \sqrt{2 \pi e\left(\delta_{1}+4 \delta_{2}\right)}}{\log q}}
$$

- For BLISS-I and BLISS-II, $\ell \approx 1.09 \cdot m$

Attack details (III)

- In practice: Works fine with LLL for $m \lesssim 60$ and with BKZ with $m \lesssim 100$

	2	5	10	20	40	60	80	100
	3	6	11	22	44	66	88	110
	3	6	12	24	50	80	110	140
	$L L L$	$L L L$	$L L L$	$L L L$	$B K Z-20$	$B K Z-25$	$B K Z-25$	$B K Z-25$
	100	99	100	100	100	100	100	98

Attack details (III)

- In practice: Works fine with LLL for $m \lesssim 60$ and with BKZ with $m \lesssim 100$
- Apply the attack for several choices of $/$ to recover all of s_{1}, and subsequently \mathbf{s}_{2} : full key recovery with one faulty signature!

Fault iteration $m=$	2	5	10	20	40	60	80	100
Theoretical min $\operatorname{dim} \ell_{\min }$	3	6	11	22	44	66	88	110
Dim ℓ (experimental)	3	6	12	24	50	80	110	140
Reduction algorithm	$L L L$	$L L L$	$L L L$	$L L L$	$B K Z-20$	$B K Z-25$	$B K Z-25$	$B K Z-25$
Success proba. (\%)	100	99	100	100	100	100	100	98
Time recovery ℓ coeffs. (s)	0.002	0.005	0.022	0.23	7.3	119	941	33655
Time full key recovery	0.5 s	0.5 s	1 s	5 s	80 s	14 min	80 min	38 h

Attack in a nutshell

- Step 1: Fault on the generation of the fresh element y_{1}.
- Step 2: Find parts of the secret with multiple CVP instances.
- Step 3: Recombine them to do a full key recovery.

Fault iteration $m=$	2	5	10	20	40	60	80	100
Time full key recovery	0.5 s	0.5 s	1 s	5 s	80 s	14 min	80 min	38 h

GPV-Based scheme

- Variant of Ducas-Lyubashevsky-Prest based on GPV-style lattice trapdoors.
- Defined once again over $\mathcal{R}=\mathbb{Z}[\mathrm{x}] /\left(\mathrm{x}^{n}+1\right)$
- Secret key:

$$
\mathrm{B} \leftarrow\left(\begin{array}{ll}
\mathbf{M}_{\mathrm{g}} & -\mathbf{M}_{\mathrm{f}} \\
\mathbf{M}_{\mathrm{G}} & -\mathbf{M}_{\mathrm{F}}
\end{array}\right) \in \mathbb{Z}^{2 n \times 2 n}
$$

for $\mathrm{f} \leftarrow D_{\sigma_{0}}^{n}, \mathrm{~g} \leftarrow D_{\sigma_{0}}^{n}$

$$
f \cdot G-g \cdot F=q
$$

Sign and Verify

1: function $\operatorname{SigN}(\mu, s k=\mathbf{B})$
2:

$$
\mathbf{c} \leftarrow H(\mu) \in \mathbb{Z}_{a}^{n}
$$

$$
(\mathrm{y}, \mathrm{z}) \leftarrow(\mathrm{c}, 0)-\operatorname{GAUSSIANSAMPLER}(\mathrm{B}, \sigma,(\mathrm{c}, 0)) \triangleright \mathrm{y}, \mathrm{z}
$$ are short and satisfy $\mathbf{y}+\mathbf{z} \cdot \mathbf{h}=\mathbf{c} \bmod q$

4: return \mathbf{z}
5: end function
1: function $\operatorname{Verify}(\mu, p k=\mathbf{h}, \mathbf{z})$
2: \quad accept iff $\|\mathbf{z}\|_{2}+\|H(\mu)-\mathbf{z} \cdot \mathbf{h}\|_{2} \leqslant \sigma \sqrt{2 n}$
3: end function

Sign and Verify

1: function $\operatorname{SigN}(\mu, s k=\mathbf{B})$
2: $\quad \mathbf{c} \leftarrow H(\mu) \in \mathbb{Z}_{q}^{n}$
3: $(\mathrm{y}, \mathrm{z}) \leftarrow(\mathrm{c}, 0)-\operatorname{GAUSSIANSAMPLER}(\mathrm{B}, \sigma,(\mathrm{c}, 0)) \quad \triangleright \mathrm{y}, \mathrm{z}$ are short and satisfy $\mathbf{y}+\mathbf{z} \cdot \mathbf{h}=\mathbf{c} \bmod q$
4: return \mathbf{z}
5: end function
1: function $\operatorname{Verify}(\mu, p k=\mathbf{h}, \mathbf{z})$
2: \quad accept iff $\|\mathbf{z}\|_{2}+\|H(\mu)-\mathbf{z} \cdot \mathbf{h}\|_{2} \leqslant \sigma \sqrt{2 n}$
3: end function

Gaussian Sampling

1: function $\operatorname{GaUSSIANSAMPLER}(\mathbf{B}, \sigma, \mathbf{c}) \triangleright \mathbf{b}_{i}\left(\underset{\widetilde{\mathbf{B}}}{ }\right.$ resp. $\left.\widetilde{\mathbf{b}}_{i}\right)$ are the rows of \mathbf{B} (resp. of its Gram-Schmidt matrix B)
2: $\quad \mathbf{v} \leftarrow \mathbf{0}$
3: \quad for $i=2 n$ down to 1 do
4: $\quad c^{\prime} \leftarrow\left\langle\mathbf{c}, \widetilde{\mathrm{b}}_{\mathfrak{i}}\right\rangle /\left\|\widetilde{\mathrm{b}}_{i}\right\|_{2}^{2}$
5:
6: $\sigma^{\prime} \leftarrow \sigma /\left\|\overrightarrow{\mathbf{b}}_{i}\right\|_{2}$
$r \leftarrow D_{\mathbb{Z}, \sigma^{\prime}, c^{\prime}}$
$\mathrm{c} \leftarrow \mathrm{c}-r \mathrm{~b}_{i}$ and $\mathrm{v} \leftarrow \mathrm{v}+r \mathrm{~b}_{i}$
end for
9:
Gaussian distribution $D_{\Lambda, \sigma, \mathrm{c}}$ end function

Gaussian Sampling

1: function GAUSSIANSAMPLER $(\mathbf{B}, \sigma, \mathbf{c}) \triangleright \mathrm{b}_{i}\left(\underset{\widetilde{\mathrm{~B}}}{ }\right.$ resp. $\left.\widetilde{\mathrm{b}}_{i}\right)$ are the rows of \mathbf{B} (resp. of its Gram-Schmidt matrix B)
2: $\quad \mathrm{v} \leftarrow \mathbf{0}$
3: \quad for $i=2 n$ down to 1 do
4: $\quad c^{\prime} \leftarrow\left\langle\mathbf{c}, \widetilde{\mathrm{b}}_{\mathrm{i}}\right\rangle /\left\|\widetilde{\mathrm{b}}_{i}\right\|_{2}^{2}$
5:
6:
7: $\quad \mathrm{c} \leftarrow \mathrm{c}-r \mathrm{~b}_{i}$ and $\mathrm{v} \leftarrow \mathrm{v}+r \mathrm{~b}_{i}$
8: end for
9:
Gaussian distribution $D_{\Lambda, \sigma, \mathrm{c}}$ end function

Attacking the Gaussian sampler

- Correctly generated signature: element of the form

$$
\mathrm{z}=\mathrm{R} \cdot \mathrm{f}+\mathrm{r} \cdot \mathrm{~F} \in \mathbb{Z}[\mathbf{x}] /\left(\mathrm{x}^{n}+1\right)
$$

Attacking the Gaussian sampler

- Correctly generated signature: element of the form

$$
\mathrm{z}=\mathrm{R} \cdot \mathrm{f}+\mathrm{r} \cdot \mathrm{~F} \in \mathbb{Z}[\mathrm{x}] /\left(\mathrm{x}^{n}+1\right)
$$

- Faults introduced after m iterations of the generation of r, R :

$$
\mathrm{z}=r_{0} \mathrm{X}^{n-1} \mathrm{~F}+r_{1} \mathrm{X}^{n-2} \mathrm{~F}+\cdots+r_{m-1} \mathrm{X}^{n-m} \mathrm{~F} .
$$

- Belongs to lattice

Attacking the Gaussian sampler

- Correctly generated signature: element of the form

$$
\mathrm{z}=\mathrm{R} \cdot \mathrm{f}+\mathrm{r} \cdot \mathrm{~F} \in \mathbb{Z}[\mathrm{x}] /\left(\mathrm{x}^{n}+1\right)
$$

- Faults introduced after m iterations of the generation of r, R :

$$
\mathrm{z}=r_{0} \mathrm{x}^{n-1} \mathrm{~F}+r_{1} \mathrm{x}^{n-2} \mathrm{~F}+\cdots+r_{m-1} \mathrm{x}^{n-m} \mathrm{~F} .
$$

- Belongs to lattice :

$$
L=\operatorname{Span}\left(\mathrm{x}^{n-i} \mathrm{~F}\right)
$$

for $1 \leqslant i \leqslant m$.

Multiple faulted signatures?

- $\mathbf{z}^{(1)}, \ldots, z^{(\ell)}$ faulty signatures.

Multiple faulted signatures?

- $\mathbf{z}^{(1)}, \ldots, z^{(\ell)}$ faulty signatures.
- With probability $\geqslant \prod_{k=l-m+1}^{+\infty} \frac{1}{\zeta(k)}$ generates L. [Maze, Rosenthal, Wagner]

Multiple faulted signatures?

- $\mathbf{z}^{(1)}, \ldots, z^{(\ell)}$ faulty signatures.
- With probability $\geqslant \prod_{k=l-m+1}^{+\infty} \frac{1}{\zeta(k)}$ generates L. [Maze, Rosenthal, Wagner]
- SVP of L should be one of the $\mathrm{x}^{n-i} \mathrm{~F}$ for $1 \leqslant i \leqslant m$.

Multiple faulted signatures?

- $\mathbf{z}^{(1)}, \ldots, z^{(\ell)}$ faulty signatures.
- With probability $\geqslant \prod_{k=l-m+1}^{+\infty} \frac{1}{\zeta(k)}$ generates L. [Maze, Rosenthal, Wagner]
- SVP of L should be one of the $\mathrm{x}^{n-i} \mathrm{~F}$ for $1 \leqslant i \leqslant m$. \Longrightarrow Full recovery of a basis $(\zeta f, \zeta g, \zeta F, \zeta G)$ for a $\zeta= \pm \mathbf{x}^{\alpha}$. (equivalent keys)

In practice

Fault after iteration number $m=$	2	5	10	20	40	60	80	100
Lattice reduction algorithm	LLL	LLL	LLL	LLL	LLL	LLL	BKZ-20	BKZ-20
Success probability for $\ell=m+1(\%)$	75	77	90	93	94	94	95	95
Avg. CPU time for $\ell=m+1(s)$	0.001	0.003	0.016	0.19	2.1	8.1	21.7	104
Success probability for $\ell=m+2(\%)$	89	95	100	100	99	99	100	100
Avg. CPU time for $\ell=m+2(s)$	0.001	0.003	0.017	0.19	2.1	8.2	21.6	146

Conclusion and countermeasures

- Important to investigate implementation attacks on lattice schemes
- Faults against Fiat-Shamir and Hash-And-Sign signatures
- Among first fault attacks against non-broken lattice signatures
- Both based on early loop abort
- One of them recovers the full key with a single faulty sig.
- Other one: multiple faulty sig., but still on fault per sig.

Conclusion and countermeasures

- Check that the loop ran completely (two loop counters)
- For \mathbf{y}_{1} : check that the result has $>(1-\varepsilon) \cdot n$ non zero coeffs.
- Alternatively: randomize the order of generation of the coefficients (still a bit risky)

Thank you for your attention!

