Fault Attacks Against Lattice-Based Signatures

T. Espitau’ P-A. Fouque B. Gérard M. Tibouchi

TLip6, Sorbonne Universités, Paris

August 12, 2016
SAC - 16

Towards postquantum cryptography

» Quantum computers would break all currently deployed
public-key crypto: RSA, discrete logs, elliptic curves

» Agencies warnings

» NSA deprecating Suite B (elliptic curves)
» NIST starting postquantum competition

Towards postquantum cryptography

» In theory, plenty of schemes quantum-resistant
» Code-based, hash trees, multivariate crypto, isogenies...
» Almost everything possible with lattices

» In practice, very few actual implementations

» Secure parameters often unclear
» Concrete software/hardware implementation papers quite rare

» Almost no consideration for implementation attacks

» Serious issue for practical postquantum crypto

Implementations of lattice-based schemes (1)

» Implementation of lattice-based crypto:

Limited and mostly academic

» One scheme has “industry” backing and quite a bit of code:
NTRU

» NTRUEncrypt, ANSI standard, believed to be okay
» NTRUSign is a trainwreck that has been patched and broken

Implementations of lattice-based schemes (I1)

> In terms of practical schemes, other than NTRU, main efforts
on signatures

| 2

GLP: improvement of Lyubashevsky signatures, efficient in SW
and HW (CHES'12)

BLISS: improvement of GLP, even better (CRYPTO'13,
CHES'14)

GPV: obtained as part of Ducas, Lyubashevsky, Prest
NTRU-based IBE (AC'14),

PASSSign (ACNS'14), TESLA (LATINCRYPT 14),...

Implementation attacks vs provable security

Break a provably secure cryptographic scheme:

Solve a hard computational problem

7

Break an implementation

Potentially bypass security proof

“PROBLEM EXIsSTS BETWEEN KEYBOARD AND CHAIR”

Implementation attacks

» Side-channel attacks: Passive physical attacks, exploiting
information leakage
» Timing attacks, power analysis, EM attacks, cache attacks,
acoustic attacks...

» Fault attacks: Active physical attacks, extract secret
information by tampering with the device to cause errors
» Faults on memory: lasers, x-rays...
» Faults on computation: variations in supply voltage, external
clock, temperature...

BLISS: the basics

» Introduced by Ducas, Durmus, Lepoint and Lyubashevsky at
CRYPTO'13

» Improvement of Ring-SIS-based scheme of Lyubashevsky

» Still kind of “Fiat—Shamir signatures”

BLISS: the basics
» Defined over R = Z[x]/(x" + 1)

» Main improvement: Reduce the size of parameters by
distributions

Span{Sc}+

BLISS: the basics

» Defined over R = Z[x]/(x" + 1)

» Main improvement: Reduce the size of parameters by Bimodal
Gaussian distributions

Distributio Camelus bactrianus

BLISS: key generation

1. function KEYGEN()
choose f, g as uniform polynomials with exactly d; = [d1n]
entries in {£1} and d» = [d2n] entries in {2}
S =(s1,82) " «+ (f,2g +1)7
if No(S) > C?-5-([d1n] +4[62n]) - k then restart
if f is not invertible then restart
ag=(2g+1)/f mod q
return (pk = A, sk =S) where
A = (a; =2a4,9—2) mod 2q
8: end function

»

SEUICRIN I

BLISS: signature

©

10:
11:

: function S1GN(p, pk = A, sk=S)

yu,y2 < Dz, > Gaussian sampling
u=(-a; -y +y2 mod 2q >¢=1/(q—-2)
c < H(|u]g mod p,) > special hashing

choose a random bit b
Z1 < y1+ (—1)bslc
Zy <— Yo + (—l)bSQC

continue with probability

1/(Mexp(—||Sc||/(20?)) cosh((z, Sc)/a?) otherwise restart

ZL — (lulg — [u—2z2]g) mod p

return (z, Z; c)

end function

BLISS: verification

1. function VERIFY(u, A, (21, zg, c))

P if ||(z1]29 - z£)||2 > By then reject

if H(zl\Zd-zg)Hoo > By then reject

4: accept iffc:H(LC-al-zl—i—C-q-c}d—i—zzmodp,u)
5: end function

o

BLISS: signature

©

10:
11:

: function S1GN(p, pk = A, sk=S)

yu,y2 < Dz, > Gaussian sampling
u=(-a; -y +y2 mod 2q >¢=1/(q—-2)
c < H(|u]g mod p,) > special hashing

choose a random bit b
Z1 < y1+ (—1)bslc
Zy <— Yo + (—l)bSQC

continue with probability

1/(Mexp(—||Sc||/(20?)) cosh((z, Sc)/a?) otherwise restart

ZL — (lulg — [u—2z2]g) mod p

return (z, Z; c)

end function

BLISS: signature

©

10:
11:

: function S1GN(p, pk = A, sk=S)

yu,y2 < Dz, > Gaussian sampling
u=(-a; -y +y2 mod 2q >¢=1/(q—-2)
c < H(|u]g mod p,) > special hashing

choose a random bit b
Z1 < y1+ (fl)bslc
Zy < yo + (—1)bs2c

continue with probability

1/(Mexp(—||Sc||/(20?)) cosh((z, Sc)/a?) otherwise restart

Zg — (lulg — [u—2z2]g) mod p

return (z, zz, c)

end function

BLISS: signature

©

10:
11:

: function S1GN(p, pk = A, sk=S)

yu,y2 < Dy, > Gaussian sampling
u=_(_-aj-y1+y2 mod2q >(=1/(g—2)
c < H(|u]g mod p,) > special hashing

choose a random bit b
Z1 < y1+ (—1)bslc
Zy <— Yo + (—l)bSQC

continue with probability

1/(Mexp(—||Sc||/(20?)) cosh((z, Sc)/a?) otherwise restart

Zg — (lulg — [u—2z2]g) mod p

return (z, Z; c)

end function

Attacking y

» y; (=discrete Gaussian) ~ additive mask in

z1 =y1 + (—1)Psic (mod @)

Attacking y

» y; (=discrete Gaussian) ~ additive mask in

z1 =y1 + (—1)Psic (mod @)

» Sampling: coefficient by coefficient

Attacking y

» y; (=discrete Gaussian) ~ additive mask in

z1 =y1 + (—1)Psic (mod @)

» Sampling: coefficient by coefficient

» Use fault injection to abort the sampling early = faulty
signature with a low-degree y1

Attacking y

» y; (=discrete Gaussian) ~ additive mask in

z1 =y1 + (—1)Psic (mod @)

» Sampling: coefficient by coefficient

» Use fault injection to abort the sampling early = faulty
signature with a low-degree y1

» Done by attacking:
» Branching test of the loop (voltage spike, clock variation...)
» Contents of the loop counter (lasers, x-rays...)

Attack details (1)

» Signature generated with y; of degree m < n

Attack details (1)

» Signature generated with y; of degree m < n
» If ¢ invertible (probability (1 —1/q)" ~ 96%):

v=clz; =cly; +(-1)%; (mod q)

Attack details (1)

» Signature generated with y; of degree m < n
» If ¢ invertible (probability (1 —1/q)" ~ 96%):

v=clz; =cly; +(-1)%; (mod q)

WLOG, b = 0 (equivalent keys)

Attack details (1)

» Signature generated with y; of degree m < n
» If ¢ invertible (probability (1 —1/q)" ~ 96%):

v=clz; =cly; +(-1)%; (mod q)

WLOG, b = 0 (equivalent keys)

> s; is short = v very close to lattice

L = Span(qZ", (w; = ¢ 'x")ocicm_1)

Sl

Attack details (1)

» Signature generated with y; of degree m < n
» If ¢ invertible (probability (1 —1/q)" ~ 96%):

v=clz; =cly; +(-1)%; (mod q)

WLOG, b = 0 (equivalent keys)

> s; is short = v very close to lattice

L = Span(qZ", (w; = ¢ 'x")ocicm_1)

Sl

» dim(L) = n too large to apply lattice reduction

Attack details (1)

» Signature generated with y; of degree m < n
» If ¢ invertible (probability (1 —1/q)" ~ 96%):

v=clz; =cly; +(-1)%; (mod q)

WLOG, b = 0 (equivalent keys)

> s; is short = v very close to lattice

L = Span(qZ", (w; = ¢ 'x")ocicm_1)

Sl

» dim(L) = n too large to apply lattice reduction

‘Same relation on subset of coefficients: REDUCE THE DIM

Attack details (1)
» Subset / C {0,...,n— 1} of cardinal £ o;: Z" — Z' projection

Attack details (1)
» Subset / C {0,...,n— 1} of cardinal £ o;: Z" — Z' projection

» (V) close to the lattice generated by ¢,(w;) and qZ'
If ¢ large enough, difference should be ¢(s1).

Attack details (1)
» Subset / C {0,...,n— 1} of cardinal £ o;: Z" — Z' projection

» (V) close to the lattice generated by ¢,(w;) and qZ'
If ¢ large enough, difference should be ¢(s1).

» CVP using Babai nearest plane algorithm. Condition on ¢ to
recover @(s1):

m 2+ log \/01+4d>

(+1> log g
~ 1— log \/27e(61+442)

log q

Attack details (1)
» Subset / C {0,...,n— 1} of cardinal £ o;: Z" — Z' projection

» (V) close to the lattice generated by ¢,(w;) and qZ'
If ¢ large enough, difference should be ¢(s1).

» CVP using Babai nearest plane algorithm. Condition on ¢ to
recover @(s1):

m 2+ log \/01+4d>

(+1> log g
~ 1 log \/27e(61+442)
B log q

» For BLISS—I and BLISS-II, £~ 1.09 - m

Attack details (I11)

» In practice: Works fine with LLL for m < 60 and with BKZ
with m < 100

2 5 10 20 40 60 80 100

3 6 11 22 a4 66 88)

3 6 12 24 50 80 110 140
LLL LLL LLL LLL BKZ-20 BKZ-25 BKZ-25 BKZ-25
100 99 100 100 100) 100 98

0.002 0005 0022 023 7.3 119 941 33655

05s 05s 1s 5s 80s 14 min 80 min 38 h

Attack details (I11)

» In practice: Works fine with LLL for m < 60 and with BKZ
with m < 100

» Apply the attack for several choices of / to recover all of sy,
and subsequently s»: full key recovery with one faulty

signature!

Fault iteration m = 2 5] 10 20 40 60 80 100
Theoretical min dim £,i, 8 6 11 22 44 66 88 110
Dim £ (experimental) 3 6 12 24 50 80 110 140
Reduction algorithm LLL LLL LLL LLL BKZ-20 BKZ-25 BKZ-25 BKZ-25
Success proba. (%) 100 99 100 100 100 100 100 98
Time recovery £ coeffs. (s) 0.002 0.005 0.022 0.28 73 119 941 33655
Time full key recovery 05s 05s 1s 5s 80 s 14 min 80 min 38 h

Attack in a nutshell

» Step 1: Fault on the generation of the fresh element y;.

» Step 2: Find parts of the secret with multiple CVP instances.

» Step 3: Recombine them to do a full key recovery.

Fault iteration m = 2 5 10 20 40 60 80 100
Time full key recovery 05s 05s 1s 5s 80s 14 min 80 min 38 h

GPV-Based scheme

» Variant of Ducas-Lyubashevsky-Prest based on GPV-style
lattice trapdoors.

» Defined once again over R = Z[x]/(x" + 1)

> Secret key:

Mg _Mf 2nx2n
B+ (MG —MF> S/

for f « D, g < Dy,

op'’!

f.G_g.F:q

Sign and Verify

1: function SIGN(u, sk = B)
2: ¢+ H(p) € Zg
(y,z) < (c,0) — GAUSSIANSAMPLER(B, 0,(c,0)) >y, z
are short and satisfy y +z-h = c mod g
return z
5: end function

1. function VERIFY(u, pk = h, z)
accept iff ||z|2 + [|[H(p) —z - h|2 < ov2n
3: end function

Sign and Verify

1: function SIGN(u, sk = B)
2: ¢+ H(p) € Zg
(y,z) < (c,0) — GAUSSIANSAMPLER(B, 0, (c,0)) > y,z
are short and satisfy y +z-h = c mod g
return z
5: end function

1. function VERIFY(u, pk = h, z)
accept iff ||z|2 + [|[H(p) —z - h|2 < ov2n
3: end function

Gaussian Sampling

. function GAUSSIANSAMPLER(B, 0,¢) © b (resp. b)) are the
rows of B (resp. of its Gram—-Schmidt matrix B)
v+0
for i=2n down to 1 do
¢ < {c,by)/|Ibill3
o' o/|bil2
r<— DZ,U’,CJ
c<+ c—rbjand v < v + rb;
end for
return v > v sampled according to the lattice
Gaussian distribution Dp ;¢
end function

[y

© @ e 9B W

._\
=

Gaussian Sampling

. function GAUSSIANSAMPLER(B, 0,¢) © b (resp. b)) are the
rows of B (resp. of its Gram—-Schmidt matrix B)
v+0
for i=2n down to 1 do
¢ < {c,by)/|Ibill3
o' o/|bil2
r<— DZ,U’,CJ
c<+ c—rbjand v < v + rb;
end for
return v > v sampled according to the lattice
Gaussian distribution Dp ;¢
end function

[y

G

._\
=

Attacking the Gaussian sampler

» Correctly generated signature: element of the form

z=R-f+r -FeZx]/(x"+1)

Attacking the Gaussian sampler

» Correctly generated signature: element of the form

z=R-f+r -FeZx]/(x"+1)

» Faults introduced after m iterations of the generation of r, R:

z=rx"'F+nx"?F+ -+ rp_1x"""F.

Attacking the Gaussian sampler

» Correctly generated signature: element of the form

z=R-f+r -FeZx]/(x"+1)

» Faults introduced after m iterations of the generation of r, R:

z=rx"'F+nx"?F+ -+ rp_1x"""F.

» Belongs to lattice :
L = Span(x""'F)

for1 <i<m.

Multiple faulted signatures?

» z(1 ..z faulty signatures.

Multiple faulted signatures?

» z(1 ..z faulty signatures.

» With probability > Zrzof’_mﬂ ﬁ generates L. [Maze,
Rosenthal, Wagner]

Multiple faulted signatures?

» z(1 ..z faulty signatures.

» With probability > Zrzof’_mﬂ ﬁ generates L. [Maze,
Rosenthal, Wagner]

» SVP of L should be one of the x"'F for 1 < i< m.

Multiple faulted signatures?

» z(1 ..z faulty signatures.

» With probability > Zrzof’_mﬂ ﬁ generates L. [Maze,
Rosenthal, Wagner]
» SVP of L should be one of the x"'F for 1 < i< m.

— Full recovery of a basis (¢f, (g, (F,(G) for a { = +x“.
(equivalent keys)

In practice

Fault after iteration number m = 2 [} 10 20 40 60 80 100
Lattice reduction algorithm LLL LLL LLL LLL LLL LLL BKZ-20 BKZ-20
Success probability for £ = m + 1 (%) 75 s 90 93 94 94 95 95
Avg. CPU time for £ = m + 1 (s) 0.001 0.003 0.016 0.19 21 8.1 21.7 104
Success probability for £ = m + 2 (%) 89 95 100 100 99 99 100 100

Avg. CPU time for £ = m + 2 (s) 0.001 0.003 0.017 0.19 21 8.2 21.6 146

Conclusion and countermeasures

» Important to investigate implementation attacks on lattice
schemes

» Faults against Fiat-Shamir and Hash-And-Sign signatures

» Among first fault attacks against non-broken lattice signatures
Both based on early loop abort

One of them recovers the full key with a single faulty sig.
Other one: multiple faulty sig., but still on fault per sig.

vV vy

Conclusion and countermeasures

» Check that the loop ran completely (two loop counters)

» For y: check that the result has > (1 —¢) - n non zero coeffs.

» Alternatively: randomize the order of generation of the
coefficients (still a bit risky)

	Introduction
	Implementation attacks on lattice schemes
	The BLISS signature scheme

	Our attacks
	Attack on the Gaussian sampling

	Conclusion and countermeasures

