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WARNING

Seed in this definition is public, NOT the initial state.
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Security notions for PRNGs with input!

m Resilience - RES +Weakest notion
Basic security, no compromise of state, looks random.

m Forward security - F\WD
Output still random even if state is compromised afterwards.

m Backward security - BWD
Output looks random even if state is compromised previously,
but enough entropy has been input since then.

m Robustness - ROB +Strongest notion
Combination of the above; adversary can tamper with state.

"Yevgeniy Dodis et al. (2013). Security Analysis of Pseudo-Random
Number Generators with Input: /dev/random is not Robust.
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Patarin’'s H-coefficient technique

m Two experiments, real and ideal.

m An experiment is described by an oracle w together with a
transcript 7 obtained by interacting with w.

m Qx the space of real oracles, while Qy is the space of ideal
oracles.

m Transcripts are partitioned into two sets; good or bad.
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m Provably robust PRNG design using the H-coefficient
technique

m Design is more efficient than other offerings



Thank you for listening.

Any Questions?
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