Security notions 00	Designs 0000	Conclusions

A Robust and Sponge–Like PRNG With Improved Efficiency

Daniel Hutchinson

Information Security Group, Royal Holloway, University of London

August 11, 2016

	Security notions 00	Designs 0000	Conclusions 00
ToC			

2 Security notions

3 Designs

4 Conclusions

Preliminaries	Security notions	Designs	Conclusions
●○○	00	0000	00

Randomness .

Preliminaries	Security notions	Designs	Conclusions
●○○		0000	00

Randomness

Preliminaries	Security notions	Designs	Conclusions
●○○	00	0000	00

Randomness

Preliminaries ●○○	Security notions	Designs 0000	Conclusions 00

ere 00	o		0000	00
		Randomness		

• \$

How?

Preliminaries	Security notions	Designs	Conclusions
○●○	00	0000	
PRNG with Input			

PRNG

Preliminaries	Security notions	Designs	Conclusions
○●○	00	0000	
PRNG with Input			

Preliminaries	Security notions	Designs	Conclusions
○●○	00	0000	
PRNG with Input			

Preliminaries	Security notions	Designs	Conclusions
○●○	00	0000	
PRNG with Input			

Preliminaries	Security notions	Designs	Conclusions
○●○	00	0000	
PRNG with Input			

Preliminaries	Designs	Conclusions
000		
PRNG with Input		

WARNING

Seed in this definition is public, NOT the initial state.

Preliminaries	Security notions	Designs	Conclusions
○O●		0000	00
PRNG with Input			

$$(n, \ell, p) \in \mathbb{N}^3$$
 Setup seed

Preliminaries	Security notions	Designs	Conclusions
○O●	00	0000	
PRNG with Input			

Preliminaries	Security notions	Designs	Conclusions
○O●	00	0000	00
PRNG with Input			

Security notions	Designs	Conclusions
••		

- Resilience RES ← Weakest notion Basic security, no compromise of state, looks random.
- Forward security FWD
 Output still random even if state is compromised afterwards.
- Backward security BWD

Output looks random even if state is compromised previously, but enough entropy has been input since then.

■ Robustness - ROB ← Strongest notion Combination of the above; adversary can tamper with state.

Security notions	Designs	Conclusions
•o		

- Resilience RES ← Weakest notion Basic security, no compromise of state, looks random.
- Forward security FWD
 Output still random even if state is compromised afterwards.
- Backward security BWD

Output looks random even if state is compromised previously, but enough entropy has been input since then.

■ Robustness - ROB ← Strongest notion Combination of the above; adversary can tamper with state.

Security notions	Designs	Conclusions
•o		

- Resilience RES ← Weakest notion Basic security, no compromise of state, looks random.
- Forward security FWD
 Output still random even if state is compromised afterwards.
- Backward security BWD

Output looks random even if state is compromised previously, but enough entropy has been input since then.

■ Robustness - ROB ←Strongest notion Combination of the above; adversary can tamper with state.

Security notions	Designs	Conclusions
•o		

- Resilience RES ← Weakest notion Basic security, no compromise of state, looks random.
- Forward security FWD
 Output still random even if state is compromised afterwards.
- Backward security BWD

Output looks random even if state is compromised previously, but enough entropy has been input since then.

■ Robustness - ROB ← Strongest notion Combination of the above; adversary can tamper with state.

Security notions	Designs	Conclusions
•o		

- Resilience RES ← Weakest notion Basic security, no compromise of state, looks random.
- Forward security FWD
 Output still random even if state is compromised afterwards.
- Backward security BWD

Output looks random even if state is compromised previously, but enough entropy has been input since then.

■ Robustness - ROB ←Strongest notion Combination of the above; adversary can tamper with state.

Security notions	Designs	Conclusions
○●	0000	00

Robustness .

Security notions	Designs ●000	Conclusions 00

Security notions 00	Designs ●000	Conclusions

Security notions	Designs	Conclusions
00	●000	00

Security notions 00	Designs ●000	Conclusions

Security notions	Designs	Conclusions
00	●000	00

Security notions	Designs	Conclusions
00	●000	00

Security notions 00	Designs ●000	Conclusions

Absorbing phase

Squeezing phase

Security notions 00	Designs ●000	Conclusions

Absorbing phase

Squeezing phase

Security notions 00	Designs 0●00	Conclusions

${\it spongeprng.refresh}$

spongeprng.refresh

spongeprng.next

000	00	0_00	00
		$\begin{bmatrix} r_i \\ r_$	$^{S_{j+t+1}}$
spongepri	ng.refresh	spongeprng.next	
		r_i r_j π π π π π	S_{j+t+1}
		SPRG.next IPM	Л

Designs

Preliminaries 000	Security notions	Designs 0●00	Conclusions 00
\frown			
(I)		r_i	

	Security notions	Designs 00●0	Conclusions 00
Patarin's H-coeffi	cient technique		

• Two experiments, real and ideal.

	Security notions 00	Designs 00●0	Conclusions 00
Patarin's H-coeffi	cient technique		

- Two experiments, real and ideal.
- An experiment is described by an oracle ω together with a transcript τ obtained by interacting with ω .

Preliminaries 000	Security notions 00	Designs 00●0	Conclusions 00
Patarin's H-coef	icient technique		

- Two experiments, real and ideal.
- An experiment is described by an oracle ω together with a transcript τ obtained by interacting with ω.
- Ω_X the space of real oracles, while Ω_Y is the space of ideal oracles.

	Security notions 00	Designs 00●0	Conclusions 00
Datarin's 4 coof			

- Two experiments, real and ideal.
- An experiment is described by an oracle ω together with a transcript τ obtained by interacting with ω.
- Ω_X the space of real oracles, while Ω_Y is the space of ideal oracles.
- Transcripts are partitioned into two sets; good or bad.

	Security notions	Designs 0000	Conclusions ●○
Conclusions			
Conclusions			

Provably robust PRNG design using the H-coefficient technique

	Security notions 00	Designs 0000	Conclusions ●○
Conclusions			
Conclusions			

Provably robust PRNG design using the H-coefficient technique

Design is more efficient than other offerings

	Security notions 00	Designs 0000	Conclusions
Questions			

Thank you for listening.

Any Questions?

