A Robust and Sponge—-Like PRNG With
Improved Efficiency

Daniel Hutchinson

Information Security Group,
Royal Holloway, University of London

August 11, 2016

HOLLOWAY

D. Hutchinson

Preliminaries

Security notions
Designs

Conclusions

Preliminaries
[]

Randomness

Preliminaries
[]

Randomness

Preliminaries
[]

Randomness

Teo

Preliminaries
[]

Randomness

How?

Teo

Preliminaries
[]

Randomness

Teo

D. Hutchinson

Preliminaries
[]e]

PRNG

D. Hutchinson

Preliminaries
[]e]

D. Hutchinson

Preliminaries
[]e]

D. Hutchinson

T

Preliminaries
[]e]

D. Hutchinson

Preliminaries
[]e]

D. Hutchinson

WARNING

Seed in this definition is public, NOT the initial state.

Preliminaries
oe

(n,l,p) € N3 Setup seed

Preliminaries
oe

(n,l,p) € N3 Setup seed
Si—1 Refresh
seed

Preliminaries
oe

(n,4,p) € N Setup seed
Si—1 Refresh

seed ,
ﬁ ri

Si—1 Next
seed

Security notions
@0

Security notions for PRNGs with input!

Yevgeniy Dodis et al. (2013). Security Analysis of Pseudo-Random
Number Generators with Input: /dev/random is not Robust.

Security notions
@0

Security notions for PRNGs with input!

m Resilience - RES +Weakest notion
Basic security, no compromise of state, looks random.

Yevgeniy Dodis et al. (2013). Security Analysis of Pseudo-Random
Number Generators with Input: /dev/random is not Robust.

Security notions
@0

Security notions for PRNGs with input!

m Resilience - RES +Weakest notion
Basic security, no compromise of state, looks random.

m Forward security - F\WD
Output still random even if state is compromised afterwards.

Yevgeniy Dodis et al. (2013). Security Analysis of Pseudo-Random
Number Generators with Input: /dev/random is not Robust.

Security notions
@0

Security notions for PRNGs with input!

m Resilience - RES +Weakest notion
Basic security, no compromise of state, looks random.

m Forward security - F\WD
Output still random even if state is compromised afterwards.

m Backward security - BWD
Output looks random even if state is compromised previously,
but enough entropy has been input since then.

"Yevgeniy Dodis et al. (2013). Security Analysis of Pseudo-Random
Number Generators with Input: /dev/random is not Robust.

Security notions
@0

Security notions for PRNGs with input!

m Resilience - RES +Weakest notion
Basic security, no compromise of state, looks random.

m Forward security - F\WD
Output still random even if state is compromised afterwards.

m Backward security - BWD
Output looks random even if state is compromised previously,
but enough entropy has been input since then.

m Robustness - ROB +Strongest notion
Combination of the above; adversary can tamper with state.

"Yevgeniy Dodis et al. (2013). Security Analysis of Pseudo-Random
Number Generators with Input: /dev/random is not Robust.

Security notions
oe

Robustness

Security notions
oe

Robustness

Recovering security Preserving security

Security notions
oe

Robustness

Recovering security Preserving security

Starts insecure,

recovers

Security notions
oe

Robustness
Recovering security Preserving security
Starts insecure, Starts secure,
recovers stays secure

Designs
[Jele]e}

Designs
[Jele]e}

Designs

0000
()
»
S; m ¥
-
_/

Designs
[Jele]e}

Designs
[Jele]e}

Designs
[Jele]e}

Designs
[Jele]e}

I N N N N N U

Absorbing phase Squeezing phase

Designs
[Jele]e}

L Y

Absorbing phase Squeezing phase

Designs
[e] le]e}

()
N
»
S; ™ _T-
iR
/

spongeprng.refresh

Designs
[e] le]e}

M M
e e Ldo Hd
i T o S ™ ™ m E
K3 —: J _E
N N
spongeprng.refresh spongeprng.next

Designs
[e] le]e}

Si s

g
D
C 2D
g
G2
i
C 2D
&

N

spongeprng.refresh spongeprng.next

C =
q

G2
&

C =
&

SPRG.next

D. Hutchinson

Designs
[e] le]e}

»
s
4)
T+ig
QCIJ
)
s
D
¢
=‘
&
1+1+lg

N N

spongeprng.refresh spongeprng.next

Sq ™

C

C =
g

G2
o

C =D
&

SPRG .refresh SPRG .next

D. Hutchinson

Designs
[e] le]e}

Si s

C

C =D
g

C =
i

C =
&

SPRG.refresh SPRG .next

Designs
[e] le]e}

Sq s

C

C =D
g

C =
i

C =
&

SPRG.refresh SPRG .next

V2]
Si ™ ¥
/
Reverie.refresh

Designs
[e] le]e}

S; ™

C

C 2D
g

C =2
i

C 2D
&

S; ™

I+ig
w»
<

Reverie.refresh Reverie.next

Designs
[e]e] e}

Patarin’'s H-coefficient technique

m Two experiments, real and ideal.

Designs
[e]e] e}

Patarin’'s H-coefficient technique

m Two experiments, real and ideal.

m An experiment is described by an oracle w together with a
transcript 7 obtained by interacting with w.

Designs
[e]e] e}

Patarin’'s H-coefficient technique

m Two experiments, real and ideal.

m An experiment is described by an oracle w together with a
transcript 7 obtained by interacting with w.

m Qx the space of real oracles, while Qy is the space of ideal
oracles.

Designs
[e]e] e}

Patarin’'s H-coefficient technique

m Two experiments, real and ideal.

m An experiment is described by an oracle w together with a
transcript 7 obtained by interacting with w.

m Qx the space of real oracles, while Qy is the space of ideal
oracles.

m Transcripts are partitioned into two sets; good or bad.

Designs
[e]ele]]

Ideal

Real
: w € Qx

D. Hutchinson

Designs
[e]ele]]

Ideal

Real
w € Qx

D. Hutchinson

Designs
[e]ele]]

Ideal

Real
w € Qx

Designs
[e]ele]]

Ideal

Real
w € Qx

D. Hutchinson

Designs
[e]ele]]

Ideal

Real
w € Qx

Designs
[e]ele]]

Ideal

Real

: w € Qx

D. Hutchinson

Designs
[e]ele]]

Ideal

Real

: w € Qx

D. Hutchinson

Designs
[e]ele]]

Ideal

D. Hutchinson

Conclusions
[]

Conclusions

m Provably robust PRNG design using the H-coefficient
technique

Conclusions
[]

Conclusions

m Provably robust PRNG design using the H-coefficient
technique

m Design is more efficient than other offerings

Thank you for listening.

Any Questions?

	Preliminaries
	PRNG with Input

	Security notions
	Designs
	Conclusions
	Conclusions
	Questions

