IBM Research

Sieving for closest lattice vectors (with preprocessing)

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/
SAC 2016, St. John's (NL), Canada (August 12, 2016)

Lattices

What is a lattice?
\circ

Lattices

What is a lattice?

$$
=
$$

Lattices
Lattice basis reduction

$$
x
$$

Lattices
Shortest Vector Problem (SVP)

$$
=\frac{7}{y}
$$

Lattices
Closest Vector Problem (CVP)
v

Outline

Sieving for SVP

Sieving for CVP

Sieving for CVPP

Conclusion

Outline

Sieving for SVP

Sieving for CVP

Sieving for CVPP

Conclusion

Sieving for SVP

Generate random lattice vectors


```
Generate random lattice vectors
```


• Sieving.for $\dot{\text { SVP }}$
Reduce thẹ vectors with each oṭher
$\stackrel{\bullet}{8}$
$\stackrel{\bullet}{\mathrm{V}_{2}}$
-
-

-
V9
$\stackrel{V_{6}}{\bullet}$
-

	\bullet
\mathbf{V}_{7}	
\mathbf{V}_{5}	

\mathbf{V}_{7}


```
        \(\mathbf{V}_{3}\)
        -
\(V_{6}\)
```

V_{10}


```
\begin{tabular}{cc} 
& \(\bullet\) \\
\(\mathbf{V}_{7}\) & \\
\(\mathbf{V}_{5}\)
\end{tabular}
\(\stackrel{\bullet}{\mathbf{v}_{3}}\)
```



```
\(\stackrel{\bullet}{\mathbf{v}}\)
-
-
\(\mathbf{V}_{6}\)
\(V_{10}\)

```

\bullet

\ominus_{7}

```


```

13
-
$\stackrel{V_{6}}{\bullet}$

```
\(V_{10}\)


```

	\bullet
\mathbf{V}_{7}	\mathbf{V}_{5}

- •
\mathbf{V}_{3}

```




\section*{Sieving for SVP}

The GaussSieve and Nguyen-Vidick sieve


\section*{}

\section*{Sieving for SVP}

Leveled sieving approaches


\section*{}

\section*{Sieving for SVP}

\section*{Locality-Sensitive Hashing (LSH)}


\section*{}

\section*{Sieving for SVP}

Locality-Sensitive Filters (LSF)


\section*{Outline}

Sieving for SVP

Sieving for CVP

Sieving for CVPP

\section*{}

\section*{Sieving for SVP}


\section*{}

\section*{Sieving for CVP}


\section*{Sieving for CVP}
- Intuitively, \(\mathrm{CVP}_{n} \approx \mathrm{SVP}_{n+1}\) [Kan87]

\section*{Sieving for CVP}
- Intuitively, \(\mathrm{CVP}_{n} \approx \mathrm{SVP}_{n+1}\) [Kan87]
- Can also directly modify sieving to solve CVP

\section*{Sieving for CVP}
- Intuitively, \(\mathrm{CVP}_{n} \approx \mathrm{SVP}_{n+1}\) [Kan87]
- Can also directly modify sieving to solve CVP
- Costs of \(\mathrm{CVP}_{n}\) factor 2 more than \(\mathrm{SVP}_{n}\)

\section*{}

Sieving for SVP

Sieving for CVP

Sieving for CVPP

Conclusion

\section*{Outline}

\section*{Sieving for CVPP}

\section*{Run a GaussSieve as preprocessing}

\section*{}

Run a GaussSieve as preprocessing

Reduce the target vectors with the list

\section*{Sieving for CVPP}

Reduce the target vectors with the list


Reduce the target vectors with the list
-


Reduce the target vectors with the list

Reduce the target vectors with the list

Reduce the target vectors with the list
-

Reduce the target vectors with the list

-


\section*{}

Reduce the target vectors with the list
-


Reduce the target vectors with the list

\(\stackrel{\bullet}{\mathbf{v}_{2}}\)
-


。
Reduce the target vectors with the list
-
-
-
-

Reduce the target vectors with the list


Reduce the target vectors with the list


Reduce the target vectors with the list

e


\section*{}
- Relation with the Voronoi cell

\section*{Sieving for CVPP \\ Relation with the Voronoi cell}


Relation with the Voronoi cell

Relation with the Voronoi cell

\section*{Sieving for CVPP}

Overview


\section*{Sieving for CVPP}

\author{
Overview
}
- Blue region: Gauss cell \(\mathscr{G}\)


\section*{Sieving for CVPP}

\section*{Overview}
- Blue region: Gauss cell \(\mathscr{G}\)
- Defined by \(2^{0.21 n+o(n)}\) short lattice vectors
- Volume: \(\operatorname{Vol}(\mathscr{G})=2^{O(n)} \cdot \operatorname{det}(\mathscr{L})\)
- Reductions always land in \(\mathscr{G}\)

\section*{Sieving for CVPP}

\section*{Overview}
- Blue region: Gauss cell \(\mathscr{G}\)
- Defined by \(2^{0.21 n+o(n)}\) short lattice vectors
- Volume: \(\operatorname{Vol}(\mathscr{G})=2^{O(n)} \cdot \operatorname{det}(\mathscr{L})\)
- Reductions always land in \(\mathscr{G}\)
- Red region: Voronoi cell \(y\)

\section*{Sieving for CVPP}

\section*{Overview}
- Blue region: Gauss cell \(\mathscr{G}\)
- Defined by \(2^{0.21 n+o(n)}\) short lattice vectors
- Volume: \(\operatorname{Vol}(\mathscr{G})=2^{O(n)} \cdot \operatorname{det}(\mathscr{L})\)
- Reductions always land in \(\mathscr{G}\)
- Red region: Voronoi cell \(V\)
- Defined by \(2^{n+o(n)}\) short lattice vectors
- Volume: \(\operatorname{Vol}(\mathscr{V})=\operatorname{det}(\mathscr{L})\)
- Reductions almost never land in \(\mathscr{V}_{2}\)

\section*{Sieving for CVPP}

\section*{Overview}
- Blue region: Gauss cell \(\mathscr{G}\)
- Defined by \(2^{0.21 n+o(n)}\) short lattice vectors
- Volume: \(\operatorname{Vol}(\mathscr{G})=2^{O(n)} \cdot \operatorname{det}(\mathscr{L})\)
- Reductions always land in \(\mathscr{G}\)
- Red region: Voronoi cell \(V\)
- Defined by \(2^{n+o(n)}\) short lattice vectors
- Volume: \(\operatorname{Vol}(\mathscr{V})=\operatorname{det}(\mathscr{L})\)
- Reductions almost never land in \(\sqrt[V]{2}\)
- Problems:

\section*{Sieving for CVPP}

\section*{Overview}
- Blue region: Gauss cell \(\mathscr{G}\)
- Defined by \(2^{0.21 n+o(n)}\) short lattice vectors
- Volume: \(\operatorname{Vol}(\mathscr{G})=2^{O(n)} \cdot \operatorname{det}(\mathscr{L})\)
- Reductions always land in \(\mathscr{G}\)
- Red region: Voronoi cell \(\mathscr{V}\)
- Defined by \(2^{n+o(n)}\) short lattice vectors
- Volume: \(\operatorname{Vol}(\mathscr{V})=\operatorname{det}(\mathscr{L})\)
- Reductions almost never land in \(\sqrt[V]{2}\)
- Problems:
- Exponentially small success probability \(\operatorname{Vol}(\mathscr{V}) / \operatorname{Vol}(\mathscr{G})\)

\section*{Sieving for CVPP}

\section*{Overview}
- Blue region: Gauss cell \(\mathscr{G}\)
- Defined by \(2^{0.21 n+o(n)}\) short lattice vectors
- Volume: \(\operatorname{Vol}(\mathscr{G})=2^{O(n)} \cdot \operatorname{det}(\mathscr{L})\)
- Reductions always land in \(\mathscr{G}\)
- Red region: Voronoi cell \(y\)
- Defined by \(2^{n+o(n)}\) short lattice vectors
- Volume: \(\operatorname{Vol}(\mathscr{V})=\operatorname{det}(\mathscr{L})\)
- Reductions almost never land in \(\sqrt[V]{2}\)
- Problems:
- Exponentially small success probability \(\operatorname{Vol}(\mathscr{V}) / \operatorname{Vol}(\mathscr{G})\)
- Probability only over randomness of targets

\section*{Sieving for CVPP}

Solving the problems
- Idea 1: Larger lists, weaker reductions

\section*{Sieving for CVPP}

Solving the problems
- Idea 1: Larger lists, weaker reductions
- Problem: Exponentially small success probability

\section*{Sieving for CVPP}

\section*{Solving the problems}
- Idea 1: Larger lists, weaker reductions
- Problem: Exponentially small success probability
- To guarantee \(\operatorname{Vol}(\mathscr{G}) \approx \operatorname{Vol}(\mathscr{V})\), need \(2^{n / 2+o(n)}\) vectors
- Preprocessing: reduce \(v_{1}\) with \(v_{2}\) iff
\[
\left\|\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right\| \leq(\sqrt{2-\sqrt{2}})\left\|\boldsymbol{v}_{1}\right\|
\]
- Fewer reductions \(\Longrightarrow\) NNS techniques work even better!







```

 Idea 1: Weaker reductions
    ```

```- Sieving for CVPP
\[
\stackrel{\bullet}{2}_{2}
\]
```









```
\(\cdots \mathrm{V}_{5}\)
\(\mathbf{V}_{7}\)
Sieving for CVPP . \(\dot{\mathrm{v}}_{8}\)
Idea 1: Weaker reductions .

\(\mathbf{V}_{4}\)
```




## Sieving for CVPP

## Solving the problems

- Idea 1: Larger lists, weaker reductions
- Problem: Exponentially small success probability
- To guarantee $\operatorname{Vol}(\mathscr{G}) \approx \operatorname{Vol}(\mathscr{V})$, need $2^{n / 2+o(n)}$ vectors
- Preprocessing: reduce $v_{1}$ with $v_{2}$ iff

$$
\left\|v_{1}-v_{2}\right\| \leq(\sqrt{2-\sqrt{2}})\left\|v_{1}\right\|
$$

- Fewer reductions $\Longrightarrow$ NNS techniques work even better!


## Sieving for CVPP

## Solving the problems

- Idea 1: Larger lists, weaker reductions
- Problem: Exponentially small success probability
- To guarantee $\operatorname{Vol}(\mathscr{G}) \approx \operatorname{Vol}(\mathscr{V})$, need $2^{n / 2+o(n)}$ vectors
- Preprocessing: reduce $v_{1}$ with $v_{2}$ iff

$$
\left\|v_{1}-v_{2}\right\| \leq(\sqrt{2-\sqrt{2}})\left\|v_{1}\right\|
$$

- Fewer reductions $\Longrightarrow$ NNS techniques work even better!
- Idea 2: Rerandomizations (full version)


## Sieving for CVPP

## Solving the problems

- Idea 1: Larger lists, weaker reductions
- Problem: Exponentially small success probability
- To guarantee $\operatorname{Vol}(\mathscr{G}) \approx \operatorname{Vol}(\mathscr{V})$, need $2^{n / 2+o(n)}$ vectors
- Preprocessing: reduce $\boldsymbol{v}_{1}$ with $\boldsymbol{v}_{2}$ iff

$$
\left\|v_{1}-v_{2}\right\| \leq(\sqrt{2-\sqrt{2}})\left\|v_{1}\right\|
$$

- Fewer reductions $\Longrightarrow$ NNS techniques work even better!
- Idea 2: Rerandomizations (full version)
- Problem: Probability only over randomness of targets


## Sieving for CVPP

## Solving the problems

- Idea 1: Larger lists, weaker reductions
- Problem: Exponentially small success probability
- To guarantee $\operatorname{Vol}(\mathscr{G}) \approx \operatorname{Vol}(\mathscr{V})$, need $2^{n / 2+o(n)}$ vectors
- Preprocessing: reduce $\boldsymbol{v}_{1}$ with $\boldsymbol{v}_{2}$ iff

$$
\left\|v_{1}-v_{2}\right\| \leq(\sqrt{2-\sqrt{2}})\left\|v_{1}\right\|
$$

- Fewer reductions $\Longrightarrow$ NNS techniques work even better!
- Idea 2: Rerandomizations (full version)
- Problem: Probability only over randomness of targets
- Randomize target $\boldsymbol{t}$ before reducing ( $\boldsymbol{t}^{\prime} \in_{R} \boldsymbol{t}+\mathscr{L}$ )
- Randomness now over algorithm, independently of target
- Optimize expected time (time / success probability)


## 

## Idea 2: Rerandomize the target <br> Sieving for CVPP

- 


## 

## Idea 2: Rerandomize the target <br> Sieving for CVPP

- 
- 
- 
- 

Idea 2: Rerandomize the target


Idea 2: Rerandomize the target


Sieving for CVPP


## 

Sieving for CVPP
Idea 2: Rerandomize the targett
-
-
-

-


Sieving for CVPP
Idea 2: Rerandomize the target

## 

Sieving for CVPP
Idea 2: Rerandomize the targett
-
-
-
-
-

Idea 2: Rerandomize the target


## 

## Sieving for CVPP

## Trade-offs



## Conclusion

- Sieving for CVP similar costs as SVP


## Conclusion

- Sieving for CVP similar costs as SVP
- Sieving for CVPP much easier than SVP


## Conclusion

- Sieving for CVP similar costs as SVP
- Sieving for CVPP much easier than SVP
- Preliminary experiments: $2000 \times$ faster in dimension 50


## Conclusion

- Sieving for CVP similar costs as SVP
- Sieving for CVPP much easier than SVP
- Preliminary experiments: $2000 \times$ faster in dimension 50
- Competitive with enumeration with pruning


## Conclusion

- Sieving for CVP similar costs as SVP
- Sieving for CVPP much easier than SVP
- Preliminary experiments: $2000 \times$ faster in dimension 50
- Competitive with enumeration with pruning
- Better complexities for approximate CVP and BDD


## Conclusion

- Sieving for CVP similar costs as SVP
- Sieving for CVPP much easier than SVP
- Preliminary experiments: $2000 \times$ faster in dimension 50
- Competitive with enumeration with pruning
- Better complexities for approximate CVP and BDD
- Open problem: hybrid enumeration with sieving


## Conclusion

- Sieving for CVP similar costs as SVP
- Sieving for CVPP much easier than SVP
- Preliminary experiments: $2000 \times$ faster in dimension 50
- Competitive with enumeration with pruning
- Better complexities for approximate CVP and BDD
- Open problem: hybrid enumeration with sieving
- Bottom part of enumeration tree corresponds to batch-CVP


## Conclusion

- Sieving for CVP similar costs as SVP
- Sieving for CVPP much easier than SVP
- Preliminary experiments: $2000 \times$ faster in dimension 50
- Competitive with enumeration with pruning
- Better complexities for approximate CVP and BDD
- Open problem: hybrid enumeration with sieving
- Bottom part of enumeration tree corresponds to batch-CVP
- An efficient CVPP algorithm would speed up enumeration


## Conclusion

- Sieving for CVP similar costs as SVP
- Sieving for CVPP much easier than SVP
- Preliminary experiments: $2000 \times$ faster in dimension 50
- Competitive with enumeration with pruning
- Better complexities for approximate CVP and BDD
- Open problem: hybrid enumeration with sieving
- Bottom part of enumeration tree corresponds to batch-CVP
- An efficient CVPP algorithm would speed up enumeration
- CVPP in low dimension $\Longrightarrow$ no memory issues

e
1

$$
\bullet
$$

- 
- 
- 

