
Four NEON: Faster Elliptic Curve Scalar Multiplications 
on ARM Processors

Patrick Longa
Microsoft Research

Selected Areas in Cryptography (SAC 2016)
St. Johns, Canada



Next-generation elliptic curves

• Recent effort to propose and deploy new elliptic curves for cryptography. 
E.g., Curve25519 (Bernstein) and Curve448 (Hamburg) recently adopted by IETF for use in the 
TLS protocol



Next-generation elliptic curves

• Recent effort to propose and deploy new elliptic curves for cryptography. 
E.g., Curve25519 (Bernstein) and Curve448 (Hamburg) recently adopted by IETF for use in the 
TLS protocol

Motivations:

1. Regain confidence and public acceptance after Snowden revelations 



Next-generation elliptic curves

• Recent effort to propose and deploy new elliptic curves for cryptography. 
E.g., Curve25519 (Bernstein) and Curve448 (Hamburg) recently adopted by IETF for use in the 
TLS protocol

Motivations:

1. Regain confidence and public acceptance after Snowden revelations 
2. Take advantage of state-of-the-art ECC algorithms with improved implementation security 

and better performance:
• new curve models
• faster scalar multiplication algorithms
• faster finite fields
• improved side-channel resistance



• New elliptic curve recently proposed by Costello-Longa (ASIACRYPT 2015)
Four uniquely combines state-of-the-art techniques in ECC:

Relevant features for next-generation ECC:

Uniqueness: only curve at the 128-bit security level with desired properties
Support for secure implementations and top performance

State-of-the-art ECC: Four



• New elliptic curve recently proposed by Costello-Longa (ASIACRYPT 2015)
• Four uniquely combines state-of-the-art techniques in ECC:

Relevant features for next-generation ECC:

Uniqueness: only curve at the 128-bit security level with desired properties
Support for secure implementations and top performance

• CM endomorphism [GLV01], Frobenius ( -curve) 
endomorphism [GLS09, Smi16, GI13]

• Edwards form [Edw07], efficient Edwards 
coordinates [BBJ+08, HCW+08]

• Arithmetic over the Mersenne prime ଵଶ଻ 1

State-of-the-art ECC: Four



• New elliptic curve recently proposed by Costello-Longa (ASIACRYPT 2015)
• Four uniquely combines state-of-the-art techniques in ECC:

• Relevant features for next-generation ECC:

1. Uniqueness: only curve at the 128-bit security level with desired properties
2. Support for secure implementations and top performance

State-of-the-art ECC: Four

• CM endomorphism [GLV01], Frobenius ( -curve) 
endomorphism [GLS09, Smi16, GI13]

• Edwards form [Edw07], efficient Edwards 
coordinates [BBJ+08, HCW+08]

• Arithmetic over the Mersenne prime ଵଶ଻ 1



Implementation security

• The original Four paper describes a constant-time, exception-free implementation



Implementation security

• The original Four paper describes a constant-time, exception-free implementation
• The Four lib library (http://research.microsoft.com/en-us/projects/fourqlib/) supports three

core scalar multiplication operations:
• , variable-base
• , fixed-base
• , double-scalar



Implementation security

• The original Four paper describes a constant-time, exception-free implementation
• The Four lib library (http://research.microsoft.com/en-us/projects/fourqlib/) supports three

core scalar multiplication operations:
• , variable-base
• , fixed-base
• , double-scalar

• Operations are protected against timing attacks, cache attacks, exception attacks, invalid 
curve attacks and small subgroup attacks  



Compared against other ECC alternatives:

Performance



Compared against other ECC alternatives:

Compared against other high-performance alternatives:

Performance



Performance

• Results in previous slide were obtained on x64 CPUs
• In this work, we want to answer the question…

how does Four perform on another platforms, e.g., on ARM?



ARM processors

• ARM dominates the mobile and wearable market
• Smartphones, smartwatches, tablets, etc.

• 32-bit Cortex-A and Cortex-M architectures have been key technologies for this success



ARM processors

• ARM dominates the mobile and wearable market
• Smartphones, smartwatches, tablets, etc.

• 32-bit Cortex-A and Cortex-M architectures have been key technologies for this success
• In this work, we targeted several widely used Cortex-A microarchitectures: Cortex-A7, Cortex-

A8, Cortex-A9 and Cortex-A15
• 32-bit ARM has a RISC-based architecture equipped with sixteen 32-bit registers and an 

instruction set supporting 32-bit operations, or a mix of 16-bit and 32-bit operations in the 
case of Thumb and Thumb2 



ARM processors

• ARM dominates the mobile and wearable market
• Smartphones, smartwatches, tablets, etc.

• 32-bit Cortex-A and Cortex-M architectures have been key technologies for this success
• In this work, we targeted several widely used Cortex-A microarchitectures: Cortex-A7, Cortex-

A8, Cortex-A9 and Cortex-A15
• 32-bit ARM has a RISC-based architecture equipped with sixteen 32-bit registers and an 

instruction set supporting 32-bit operations, or a mix of 16-bit and 32-bit operations in the 
case of Thumb and Thumb2 

• Many ARM-based processors come equipped with NEON, a powerful 128-bit SIMD engine
• In this talk, we exploit NEON to perform high-performance, constant-time Four scalar 

multiplications 



• NEON is supported by a wide range of ARM-based processors 
• SIMD instructions can perform 128-bit wide operations on 8-bit (BYTE), 16-bit (WORD), 32-

bit (DOUBLEWORD) or 64-bit (QUADWORD) operands 

Vector ARM instructions: NEON 



• NEON is supported by a wide range of ARM-based processors 
• SIMD instructions can perform 128-bit wide operations on 8-bit (BYTE), 16-bit (WORD), 32-

bit (DOUBLEWORD) or 64-bit (QUADWORD) operands 
• It comes with sixteen 128-bit registers (q0-q15)

Vector ARM instructions: NEON 

q0
q1
q2
q3

q15

128 bits

૜ ૛ ૚ ૙

૜ ૛ ૚ ૙

૜ ૜ ૛ ૛ ૚ ૚ ૙ ૙



• VMULL.S32: signed 2-way -bit multiplies resulting in two 64-bit products 

Vector ARM instructions: NEON 

૜ ૛ ૚ ૙

૜ ૛ ૚ ૙

32 bits

q0

q1



• VMULL.S32: signed 2-way -bit multiplies resulting in two 64-bit products 

Vector ARM instructions: NEON 

૙ ૙૙ ૚q2

VMULL.S32   d4, d2, d0[0]

૜ ૛ ૚ ૙

૜ ૛ ૚ ૙

32 bits

q0

q1



• VMULL.S32: signed 2-way -bit multiplies resulting in two 64-bit products 

Vector ARM instructions: NEON 

૚ ૙૚ ૚q2

VMULL.S32   d4, d2, d0[1]

૜ ૛ ૚ ૙

૜ ૛ ૚ ૙

32 bits

q0

q1



• VMLAL.S32: signed 2-way -bit multiplies resulting in two 64-bit products followed 
by 64-bit additions 

Vector ARM instructions: NEON 

૙ ૙૙ ૚

VMLAL.S32   q2, d2, d0[0]

૜ ૛ ૚ ૙

૜ ૛ ૚ ૙

32 bits

q0

q1

૙૚q2

૙ ૙ ૙૙ ૚ ૚q2



• When there are no pipeline stalls, most instructions take 1 cycle
• When there no pipeline stalls, vmull.s32 and vmlal.s32 take 2 cycles

• Additions for accumulation are for free 
• vmull.s32 and vmlal.s32 have latencies of 6 cycles

Vector ARM instructions: NEON 



• When there are no pipeline stalls, most instructions take 1 cycle
• When there no pipeline stalls, vmull.s32 and vmlal.s32 take 2 cycles

• Additions for accumulation are for free 
• vmull.s32 and vmlal.s32 have latencies of 6 cycles

What we want to exploit:
• Special forwarding when a multiply or a multiply-and-add is followed by a multiply-and-add 

that depends on the result of the previous instruction: instructions are executed back-to-
back with maximal throughput of 2 cycles/instruction

Vector ARM instructions: NEON 



• When there are no pipeline stalls, most instructions take 1 cycle
• When there no pipeline stalls, vmull.s32 and vmlal.s32 take 2 cycles

• Additions for accumulation are for free 
• vmull.s32 and vmlal.s32 have latencies of 6 cycles

What we want to exploit:
• Special forwarding when a multiply or a multiply-and-add is followed by a multiply-and-add 

that depends on the result of the previous instruction: instructions are executed back-to-
back with maximal throughput of 2 cycles/instruction

What we want to minimize:
• Shuffling data between vector registers introduces some overhead

Vector ARM instructions: NEON 



௣మ
ଶ ଶ ଶ ଶ

ଵଶ଻ 1, ଶ , , where is a -bit prime.

Four



௣మ
ଶ ଶ ଶ ଶ

ଵଶ଻ 1, ଶ , , where is a -bit prime.

• is equipped with two endomorphisms, and 
•  ట and  థ for all and ଶହ଺

ଵ ଶ ଷ ସ

ଵ ଶ ଷ ସ

Four



FIELD 
ARITHMETIC

POINT 
ARITHMETIC

SCALAR 

ARITHMETIC

POINT 
ARITHMETIC

Scalar multiplication operations via 
4-way scalar decompositions

Doubling and addition of points:     
2P , P+Q

Field addition, subtraction, 
multiplication, squaring, inversion

Four ’s arithmetic layers 

EXTENSION FIELD ARITHMETIC



• Recall that Four works over ௣మ ௣ with ଶ

• Let ଴ ଵ ଴ ଵ ௣మ.  Elements ଴ ଵ ଴ ଵ ௣

Arithmetic in 



• Recall that Four works over ௣మ ௣ with ଶ

• Let ଴ ଵ ଴ ଵ ௣మ.  Elements ଴ ଵ ଴ ଵ ௣

଴ ଴ ଵ ଵ

଴ ଴ ଵ ଵ

଴ ଴ ଵ ଵ ଴ ଵ ଵ ଴
ଶ

଴ ଵ ଴ ଵ ଴ ଵ
ିଵ

଴ ଴
ଶ

ଵ
ଶ ିଵ

ଵ ଴
ଶ

ଵ
ଶ ିଵ

• Computations only involve simple operations in ଶభమళିଵ

Arithmetic in 



• An element ௣మ is represented as an interleaved ten-coefficient vector

where ଴ ଵ
ଶ଺

ଶ
ହଶ

ଷ
଻଼

ସ
ଵ଴ସ and ଴ ଵ

ଶ଺
ଶ

ହଶ
ଷ

଻଼

ସ
ଵ଴ସ.

Four meets NEON: Four NEON

ସ ସ ଷ ଷ ଶ ଶ ଵ ଵ ଴ ଴

32 bits



• An element ௣మ is represented as an interleaved ten-coefficient vector

where ଴ ଵ
ଶ଺

ଶ
ହଶ

ଷ
଻଼

ସ
ଵ଴ସ and ଴ ଵ

ଶ଺
ଶ

ହଶ
ଷ

଻଼

ସ
ଵ଴ସ.

• When fully reduced, ଴ ଷ ଴ ଷ have 26 bits and ସ ସ have 23 bits
• Coefficients are signed, i.e., ଴ ଷ ଴ ଷ

ଶ଺ ଶ଺ and ସ ସ
ଶଷ ଶଷ when 

fully reduced

Four meets NEON: Four NEON

ସ ସ ଷ ଷ ଶ ଶ ଵ ଵ ଴ ଴

32 bits



• An element ௣మ is represented as an interleaved ten-coefficient vector

where ଴ ଵ
ଶ଺

ଶ
ହଶ

ଷ
଻଼

ସ
ଵ଴ସ and ଴ ଵ

ଶ଺
ଶ

ହଶ
ଷ

଻଼

ସ
ଵ଴ସ.

• When fully reduced, ଴ ଷ ଴ ଷ have 26 bits and ସ ସ have 23 bits
• Coefficients are signed, i.e., ଴ ଷ ଴ ଷ

ଶ଺ ଶ଺ and ସ ସ
ଶଷ ଶଷ when 

fully reduced
• Functions to convert back and forth between vector and canonical representations are 

straightforward and are only required once at the beginning and once at the end of scalar 
multiplication

Four meets NEON: Four NEON

ସ ସ ଷ ଷ ଶ ଶ ଵ ଵ ଴ ଴

32 bits



• Addition and subtraction in ௣మ are simply coefficient-wise operations
32 bits

ଷ ଷ ଶ ଶ ଶ ଶ ଵ ଵ ଵ ଵ ଴ ଴ ଴ ଴ସ ସ ସ ସ ଷ ଷ

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

Arithmetic in 



• Addition and subtraction in ௣మ are simply coefficient-wise operations

• Requires two 128-bit NEON additions (resp. subtractions) and one 64-bit NEON addition 
(resp. subtraction) using vadd.32 (resp. vsub.s32)

• We can perform many additions and subtractions without overflowing the 32-bit coefficient 
storage capacity

32 bits

ଷ ଷ ଶ ଶ ଶ ଶ ଵ ଵ ଵ ଵ ଴ ଴ ଴ ଴ସ ସ ସ ସ ଷ ଷ

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

Arithmetic in 



• Multiplication and squaring in ௣మ use as basis a schoolbook-like multiplication
• Define field elements ଴ ଵ

ଶ଺
ଶ

ହଶ
ଷ

଻଼
ସ

ଵ଴ସ and ଴ ଵ
ଶ଺

ଶ
ହଶ

ଷ
଻଼

ସ
ଵ଴ସ

Arithmetic in : multiplication  



• Multiplication and squaring in ௣మ use as basis a schoolbook-like multiplication
• Define field elements ଴ ଵ

ଶ଺
ଶ

ହଶ
ଷ

଻଼
ସ

ଵ଴ସ and ଴ ଵ
ଶ଺

ଶ
ହଶ

ଷ
଻଼

ସ
ଵ଴ସ

• We compute as

଴ ଴ ଴ ଵ ସ ସ ଵ ଶ ଷ ଷ ଶ

ଵ ଴ ଵ ଵ ଴ ଶ ସ ସ ଶ ଷ ଷ

ଶ ଴ ଶ ଶ ଴ ଵ ଵ ଷ ସ ସ ଷ

ଷ ଴ ଷ ଷ ଴ ଵ ଶ ଶ ଵ ସ ସ

ସ ଴ ସ ସ ଴ ଵ ଷ ଷ ଵ ଶ ଶ

where ଴ ଵ
ଶ଺

ଶ
ହଶ

ଷ
଻଼

ସ
ଵ଴ସ.

(Note that ଵଷ଴ ) 

Arithmetic in : multiplication  



• We describe the case of multiplication (the most time-critical operation)
• Let ௣మ

Arithmetic in : multiplication  



• We describe the case of multiplication (the most time-critical operation)
• Let ௣మ

• Let ସ ସ ଷ ଷ ଶ ଶ ଵ ଵ ଴ ଴ and ସ ସ ଷ ଷ ଶ ଶ ଵ ଵ ଴ ଴
using the interleaved representation

• We compute as 

Arithmetic in : multiplication  



Arithmetic in : multiplication  

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

32 bits

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

• Computing and :



Arithmetic in : multiplication  

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

଴ ଴ ଴ ଴

32 bits

VMULL.S32

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

• Computing and :



Arithmetic in : multiplication  

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

଴ ଴ ଴ ଴

32 bits

VMULL.S32

ଵ ସ ଵ ସ VMLAL.S32

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

• Computing and :



Arithmetic in : multiplication  

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

଴ ଴ ଴ ଴

32 bits

VMULL.S32

ଵ ସ ଵ ସ VMLAL.S32

ସ ଵ ସ ଵ VMLAL.S32

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

• Computing and :



Arithmetic in : multiplication  

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

଴ ଴ ଴ ଴

32 bits

VMULL.S32

ଵ ସ ଵ ସ VMLAL.S32

ସ ଵ ସ ଵ VMLAL.S32

ଶ ଷ ଶ ଷ VMLAL.S32

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

• Computing and :



Arithmetic in : multiplication  

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

଴ ଴ ଴ ଴

32 bits

VMULL.S32

ଵ ସ ଵ ସ VMLAL.S32

ସ ଵ ସ ଵ VMLAL.S32

ଶ ଷ ଶ ଷ VMLAL.S32

ଷ ଶ ଷ ଶ VMLAL.S32

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

• Computing and :



Arithmetic in : multiplication  

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

଴ ଴ ଴ ଴

32 bits

VMULL.S32

ଵ ସ ଵ ସ VMLAL.S32

ସ ଵ ସ ଵ VMLAL.S32

ଶ ଷ ଶ ଷ VMLAL.S32

ଷ ଶ ଷ ଶ VMLAL.S32

଴ ଴

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

• Computing and :



Arithmetic in : multiplication  

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

32 bits

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

• Computing and :



Arithmetic in : multiplication  

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

଴ ଵ ଴ ଵ

32 bits

VMULL.S32

ଵ ଴ ଵ ଴ VMLAL.S32

ଶ ସ ଶ ସ VMLAL.S32

ସ ଶ ସ ଶ VMLAL.S32

ଷ ଷ ଷ ଷ VMLAL.S32

ଵ ଵ

ଷ ଶ ଶ ଵ ଵ ଴ ଴ସ ସ ଷ

• Computing and :



• Repeat until getting

Arithmetic in : multiplication  

ଶ ଶ

଴ ଴

ଵ ଵ

ଷ ଷ

ସ ସ

64 bits



• Repeat until getting

• Similar work done for computing and 

Arithmetic in : multiplication  

ଶ ଶ

଴ ଴

ଵ ଵ

ଷ ଷ

ସ ସ

ଶ ଶ

଴ ଴

ଵ ଵ

ଷ ଷ

ସ ସ

64 bits



• Computing and :

Arithmetic in : multiplication  



• Computing and :

Arithmetic in : multiplication  

଴ ଴

଴଴

64 bits

VSUB.S64 VADD.S64



• Computing and :

Arithmetic in : multiplication  

଴ ଴

଴଴

଴ ଴ ଴ ଴

64 bits

VSUB.S64 VADD.S64



• Computing and :

Arithmetic in : multiplication  

଴ ଴

଴଴

଴ ଴ ଴ ଴

ସ ସ

ସସ

ସ ସ ସ ସ

64 bits

VSUB.S64

VSUB.S64

VADD.S64

VADD.S64



• Computing and :

Arithmetic in : multiplication  

଴ ଴

଴଴

଴ ଴ ଴ ଴

ସ ସ

ସସ

ସ ସ ସ ସ

଴ ଴ ଴ ଴

ଵ ଵ ଵ ଵ

ଶ ଶ ଶ ଶ

ଷ ଷ ଷ ଷ

ସ ସ ସ ସ

64 bits

64 bits

VSUB.S64

VSUB.S64

VADD.S64

VADD.S64



• Computing and :

Arithmetic in : multiplication  

଴ ଴

଴଴

଴ ଴ ଴ ଴

ସ ସ

ସସ

ସ ସ ସ ସ

଴ ଴ ଴ ଴

ଵ ଵ ଵ ଵ

ଶ ଶ ଶ ଶ

ଷ ଷ ଷ ଷ

ସ ସ ସ ସ

• A final carry correction is required to reduce terms
from 64 to 32 bits

64 bits

64 bits

VSUB.S64

VSUB.S64

VADD.S64

VADD.S64



• In our implementation, we do not exactly execute operations in the order previously 
described 

• We reschedule operations to make them fit in the 16 available NEON registers 

Arithmetic in 



• In our implementation, we do not exactly execute operations in the order previously 
described 

• We reschedule operations to make them fit in the 16 available NEON registers 

In the paper, we describe additional techniques to improve performance. 

For example:
• Mixing ARM and NEON instructions in the ௣మ arithmetic in Cortex-A8 and A9.
• Interleaving memory and non-memory instructions in Cortex-A7, A8 and A9

Arithmetic in 



Comparison with other 128-bit security curves

Kummer: implementations by Bernstein et al [BCL+14]. Results from [eBACS].
Curve25519: implementations by Bernstein and Schwabe [BS12]. Results from [eBACS].
NIST K-283: implementation and results from Câmara et al. [CGL+13].

Curve Field Cortex-A7 Cortex-A8 Cortex-A9 Cortex-A15

Four (this work) ௣మ
ଵଶ଻ 1 378 242 257 133

Kummer (Gaudry-Schost) ௣,  ଵଶ଻ 1 580 305 356 224

Curve25519  (Bernstein) ௣,  ଶହହ 926 497 568 315

NIST K-283 binary, ଶమఴయ - 934 1,148 736

Cycles to compute variable-base scalar multiplication (in ସ cycles)

* Results obtained by running SUPERCOP on the targeted machine.

*

*

*



Comparison with other 128-bit security curves

Kummer: implementations by Bernstein et al [BCL+14]. Results from [eBACS].
Curve25519: implementations by Bernstein and Schwabe [BS12]. Results from [eBACS].
NIST K-283: implementation and results from Câmara et al. [CGL+13].

Curve Field Cortex-A7 Cortex-A8 Cortex-A9 Cortex-A15

Four (this work) ௣మ
ଵଶ଻ 1 378 242 257 133

Kummer (Gaudry-Schost) ௣,  ଵଶ଻ 1 580 305 356 224

Curve25519  (Bernstein) ௣,  ଶହହ 926 497 568 315

NIST K-283 binary, ଶమఴయ - 934 1,148 736

Cycles to compute variable-base scalar multiplication (in ସ cycles)

* Results obtained by running SUPERCOP on the targeted machine.

*

*

*



In summary, for variable-base scalar multiplication, Four is:

• Between 2.1 2.4 times faster than Curve25519
• Between 1.3 1.7 times faster than genus 2 Kummer

Comparison with other 128-bit security curves



• But… results are even better in some practical scenarios!

Comparison with other 128-bit security curves



• But… results are even better in some practical scenarios!
• For example, genus 2 Kummer does not support efficient fixed-base scalar multiplications

Comparison with other 128-bit security curves



• But… results are even better in some practical scenarios!
• For example, genus 2 Kummer does not support efficient fixed-base scalar multiplications
• Therefore, scenarios such as ephemeral Diffie-Hellman key exchange or digital signatures can 

be dramatically faster on Four

Comparison with other 128-bit security curves



• But… results are even better in some practical scenarios!
• For example, genus 2 Kummer does not support efficient fixed-base scalar multiplications
• Therefore, scenarios such as ephemeral Diffie-Hellman key exchange or digital signatures can 

be dramatically faster on Four

Comparison with other 128-bit security curves

Kummer: implementations by Bernstein et al [BCL+14]. Results from [eBACS]. Assuming that the 
cost is dominated by one ladder computation. Costs are slightly higher according to [CCS15]. 

Curve Field Cortex-A7 Cortex-A8 Cortex-A9 Cortex-A15

Four (this work) ௣మ
ଵଶ଻ 1 204 144 145 84

Kummer (Gaudry-Schost) ௣,  ଵଶ଻ 1 580 305 356 224

Cycles to compute scalar multiplication during signing (in ସ cycles)

* Results obtained by running SUPERCOP on the targeted machine.

*

*

*



Comparison with other 128-bit security curves

In summary, for signing, it is estimated that Four is:

• At least between 2.1 2.8 times faster than genus 2 Kummer



Relevant links

• The code is now part of Four lib, version 2.0: 

Download it from: http://research.microsoft.com/en-us/projects/fourqlib/



References
[Ber06] D.J. Bernstein. Curve25519: New Diffie-Hellman speed records. PKC 2006.

[BBJ+08] D.J. Bernstein, P. Birkner, M. Joye, T. Lange and C. Peters. Twisted Edwards curves. AFRICACRYPT 2008.

[BCL+14] D. J. Bernstein, C. Chuengsatiansup, T. Lange and P. Schwabe. Kummer strikes back: New DH speed records. 
ASIACRYPT 2014.

[eBACS] D.J. Bernstein and T. Lange. eBACS: ECRYPT Benchmarking of Cryptographic Systems, accessed on May 15, 2016. 
http://bench.cr.yp.to/results-dh.html

[CCS15] P. N. Chung, C. Costello and B. Smith: Fast, uniform, and compact scalar multiplication for elliptic curves and genus 
2 Jacobians with applications to signature schemes, Cryptology ePrint Archive: Report 2015/983, 2015.

[Edw07] H. Edwards. A normal form for elliptic curves. Bulletin of the AMS, 2007.

[GLS09] S.D. Galbraith, X. Lin, M. Scott. Endomorphisms for faster elliptic curve cryptography on a large class of curves. 
EUROCRYPT 2009.

[GLV01] R.P. Gallant, R.J. Lambert, S.A. Vanstone. Faster point multiplication on elliptic curves with efficient 
endomorphisms. CRYPTO 2001.

[GS12] P. Gaudry and E. Schost. Genus 2 point counting over prime fields. J. Symbolic Computation, 2012.

[GI13] A. Guillevic and S. Ionica. Four-dimensional GLV via the Weil restriction. ASIACRYPT 2013.

[HCW+08] H. Hisil, G. Carter, K.K. Wong and E. Dawson. Twisted Edwards curves revisited. ASIACRYPT 2008. 

[Smi16] B. Smith. The Q-curve construction for endomorphism-accelerated elliptic curves. J. Cryptology, 2016.



Four NEON: Faster Elliptic Curve Scalar Multiplications 
on ARM Processors

Selected Areas in Cryptography (SAC 2016)
St. Johns, Canada

Patrick Longa
Website:  http://research.microsoft.com/en-us/people/plonga/

Twitter: @PatrickLonga


