
Fault Attack Resistance Using
Intra-Instruction Redundancy

Conor Patrick, Bilgiday Yuce, Nahid Farhady Ghalaty, Patrick Schaumont

Secure Embedded Systems, Virginia Tech

This research was supported in part by the NSF Grant 1441710, Semiconductor Research
Corporation Task 2552.001, and NSF CyberCorps Program.

1
August 12, 2016

This presentation

- Secure software countermeasure against fault attacks

1. Why fault attacks
2. Current countermeasures
3. Intra-Instruction Redundancy (IIR)
4. Improve upon IIR
5. Results

2/31Instra-Instruction Redundancy. Conor Patrick.

Fault Attacks

- Method for getting secrets or processor control
- S. Ali et. al found that AES can be broken with just two fault injections

Fault attacks need two things

- Ability to inject fault
- Ability to observe there was fault (this is what countermeasures focus on)

3/31Instra-Instruction Redundancy. Conor Patrick.

Fault attack countermeasures

- All leverage some form of redundancy
- Error correcting codes, duplicated execution
- Can be in hardware or software

- Or detectors
- Clock or voltage glitch detectors, temperature sensors
- Requires special hardware

4/31Instra-Instruction Redundancy. Conor Patrick.

Our motivation

- Hardware solutions are expensive and slow to market
- Can we resist fault attacks using only software?

5/31Instra-Instruction Redundancy. Conor Patrick.

Software countermeasures: Algorithm Duplication

6/31Instra-Instruction Redundancy. Conor Patrick.

Software countermeasures: Algorithm Duplication

Detected!

7/31Instra-Instruction Redundancy. Conor Patrick.

Software countermeasures: Algorithm Duplication

Not detected!

8/31Instra-Instruction Redundancy. Conor Patrick.

Software countermeasures: Instruction Duplication

9/31Instra-Instruction Redundancy. Conor Patrick.

Software countermeasures: Instruction Duplication

10/31Instra-Instruction Redundancy. Conor Patrick.

Detected!

Software countermeasures: Instruction Duplication

11/31
Not detected!

Instra-Instruction Redundancy. Conor Patrick.

Software countermeasures: Instruction Duplication

12/31

Check out our paper:
Software Fault Resistance is Futile: Effective
Single-glitch Attacks

Not Detected!
Instra-Instruction Redundancy. Conor Patrick.

Software countermeasures: Infective

All attempts have been broken

13/31Instra-Instruction Redundancy. Conor Patrick.

Intra-Instruction Redundancy (IIR)

- Redundancy is not separated by time
- Generic to any bit-sliceable algorithm (block ciphers)
- Can integrate with other countermeasures

14/31Instra-Instruction Redundancy. Conor Patrick.

Our software countermeasure: Intra-Instruction Redundancy (IIR)

15/31Instra-Instruction Redundancy. Conor Patrick.

Our software countermeasure: Intra-Instruction Redundancy (IIR)

An adversary must make a target 2 bit fault in a processor word

16/31Instra-Instruction Redundancy. Conor Patrick.

How to implement? With bit-slicing.
- 32 bit processor word
- 32, 128-bit blocks to encrypt

17/31Instra-Instruction Redundancy. Conor Patrick.

IIR Slice Allocation

18/31Instra-Instruction Redundancy. Conor Patrick.

Theoretical Fault Coverage

19/31

~100%

94.90%

100%

75%

51.61%

Problem: rounds are time separated

20/31Instra-Instruction Redundancy. Conor Patrick.

Solution: make each slice a different round

21/31Instra-Instruction Redundancy. Conor Patrick.

Improving IIR by adding Pipelining

22/31Instra-Instruction Redundancy. Conor Patrick.

Theoretical Fault Coverage

23/31

~100%

99.90%

100%

99.90%

96.77%

More: add random shifts

24/31Instra-Instruction Redundancy. Conor Patrick.

Experimental Results Setup

- We tested our countermeasures in simulation
- 32 bit SPARC/LEON3 simulator by Cobham Gaisler
- Gives cycle accurate performance measurements
- Wrote a wrapper program to extend it to simulate various fault scenarios

- Ran fault tests on the SBOX part of a AES implementation
we wrote

- Each simulation injected 20,200 data faults and 7,200
instruction skips.

25/31Instra-Instruction Redundancy. Conor Patrick.

Our reference bit-sliced AES Implementation

- Implemented our own bit-sliced AES
- Made 3 forks of it to test 3 different countermeasures

32 bit SPARC/LEON3 overhead:

Performance Program size

469.3 cycles/byte 5576 bytes

* This is slow but relative performance of countermeasures will scale
with performance of base implementation

26/31Instra-Instruction Redundancy. Conor Patrick.

Countermeasure Overhead

Performance Footprint

Unprotected AES 469.3
cycles/byte

5576 bytes

IIR-AES 1055.9
cycles/byte

6357 bytes

Pipelined IIR-AES 1942.9
cycles/byte

5688 bytes

Shuffled Pipelined
IIR-AES

1957
cycles/byte

6134 bytes

27/31Instra-Instruction Redundancy. Conor Patrick.

Countermeasure Program Size Overhead

28/31Instra-Instruction Redundancy. Conor Patrick.

Countermeasure Performance Overhead

29/31Instra-Instruction Redundancy. Conor Patrick.

Experimental Results

30/31

100%

99.99%

100%

98.86%

98.6%

To conclude

- Introduced a novel method for software fault detection
using IIR

- We believe this is the best you can do to protect from faults in SW

- Protect from well targeted, repeatable faults.
- Acceptable performance costs and minimal program size

overhead.
- Verified our fault coverage in simulation.

31/31Instra-Instruction Redundancy. Conor Patrick.

Thank you

Questions?

Web: www.faculty.ece.vt.edu/schaum/research/

Twitter: @_conorpp

Email: conorpp@vt.edu

Github: Secure-Embedded-Systems

http://www.faculty.ece.vt.edu/schaum/research/
mailto:conorpp@vt.edu

