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This presentation

- Secure software countermeasure against fault attacks

1. Why fault attacks
2. Current countermeasures
3. Intra-Instruction Redundancy (IIR)
4. Improve upon IIR
5. Results
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Fault Attacks

- Method for getting secrets or processor control
- S. Ali et. al found that AES can be broken with just two fault injections

Fault attacks need two things

- Ability to inject fault
- Ability to observe there was fault (this is what countermeasures focus on)
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Fault attack countermeasures

- All leverage some form of redundancy
- Error correcting codes, duplicated execution
- Can be in hardware or software

- Or detectors
- Clock or voltage glitch detectors, temperature sensors
- Requires special hardware
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Our motivation

- Hardware solutions are expensive and slow to market
- Can we resist fault attacks using only software?
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Software countermeasures: Algorithm Duplication
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Software countermeasures: Algorithm Duplication

Detected!
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Software countermeasures: Algorithm Duplication

Not detected!
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Software countermeasures: Instruction Duplication
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Software countermeasures: Instruction Duplication
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Detected!



Software countermeasures: Instruction Duplication
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Not detected!
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Software countermeasures: Instruction Duplication
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Check out our paper:
Software Fault Resistance is Futile: Effective 
Single-glitch Attacks

Not Detected!
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Software countermeasures: Infective

All attempts have been broken
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Intra-Instruction Redundancy (IIR)

- Redundancy is not separated by time
- Generic to any bit-sliceable algorithm (block ciphers)
- Can integrate with other countermeasures
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Our software countermeasure: Intra-Instruction Redundancy (IIR)
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Our software countermeasure: Intra-Instruction Redundancy (IIR)

An adversary must make a target 2 bit fault in a processor word
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How to implement?  With bit-slicing.
- 32 bit processor word
- 32, 128-bit blocks to encrypt
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IIR Slice Allocation
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Theoretical Fault Coverage
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~100%

94.90%

100%

75%

51.61%



Problem: rounds are time separated
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Solution: make each slice a different round
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Improving IIR by adding Pipelining
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Theoretical Fault Coverage
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~100%

99.90%

100%

99.90%

96.77%



More: add random shifts
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Experimental Results Setup

- We tested our countermeasures in simulation
- 32 bit SPARC/LEON3 simulator by Cobham Gaisler
- Gives cycle accurate performance measurements
- Wrote a wrapper program to extend it to simulate various fault scenarios

- Ran fault tests on the SBOX part of a AES implementation 
we wrote

- Each simulation injected 20,200 data faults and 7,200 
instruction skips.

25/31Instra-Instruction Redundancy.   Conor Patrick.



Our reference bit-sliced AES Implementation

- Implemented our own bit-sliced AES
- Made 3 forks of it to test 3 different countermeasures

32 bit SPARC/LEON3 overhead:

Performance Program size

469.3 cycles/byte 5576 bytes

* This is slow but relative performance of countermeasures will scale 
with performance of base implementation
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Countermeasure Overhead

Performance Footprint

Unprotected AES 469.3 
cycles/byte

5576 bytes

IIR-AES 1055.9 
cycles/byte

6357 bytes

Pipelined IIR-AES 1942.9 
cycles/byte

5688 bytes

Shuffled Pipelined 
IIR-AES

1957 
cycles/byte

6134 bytes
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Countermeasure Program Size Overhead
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Countermeasure Performance Overhead
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Experimental Results
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100%

99.99%

100%

98.86%

98.6%



To conclude

- Introduced a novel method for software fault detection 
using IIR

- We believe this is the best you can do to protect from faults in SW

- Protect from well targeted, repeatable faults.
- Acceptable performance costs and minimal program size 

overhead.
- Verified our fault coverage in simulation.
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Thank you

Questions?

Web: www.faculty.ece.vt.edu/schaum/research/

Twitter: @_conorpp

Email: conorpp@vt.edu

Github: Secure-Embedded-Systems
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