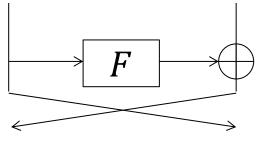


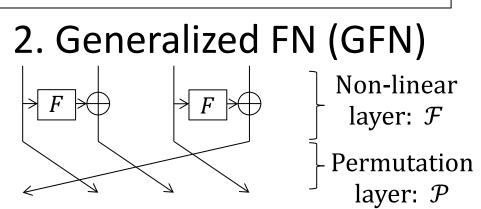
New Differential Bounds and Division Property of LILLIPUT: Block Cipher with Extended Generalized Feistel Network

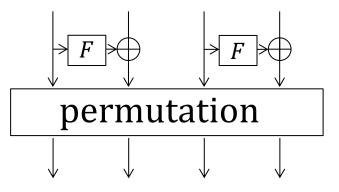
Yu Sasaki, and Yosuke Todo NTT Secure Platform Laboratories 10/August/2016 @ SAC 2016

Security analysis of LW block cipher *LILLIPUT* adopting recently devised design (EGFN)

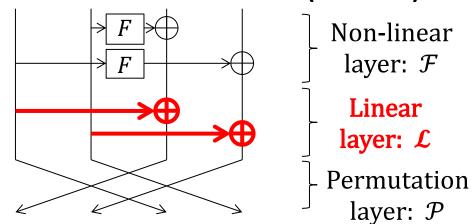
- 1. New bounds of the #active Sboxes
 - Lilliput is not Markov cipher. Evaluation is hard.
 - Search with Mixed Integer Linear Programing
 - \rightarrow designer's bounds are incorrect / get new bounds
- 2. Best attack with division property
 - EGFN does not increase algebraic degrees.
 - It resists standard integral attack wells, but does not resist division-property based attacks efficiently.


- Designing a secure/efficient block cipher is a long-term challenge in symmetric-key field.
- Lightweight cipher has been actively discussed.
 - standardization by ISO
 - lightweight workshop by NIST
- A huge number of designs were proposed in the last decade.
 - 40+ designs, e.g. PRESENT or Simon/Speck
 - Yet another one, Skinny, appears in CRYPTO 2016.




Feistel network is a major design approach.

1. Feistel Network (FN)



3. Block-shuffle GFN

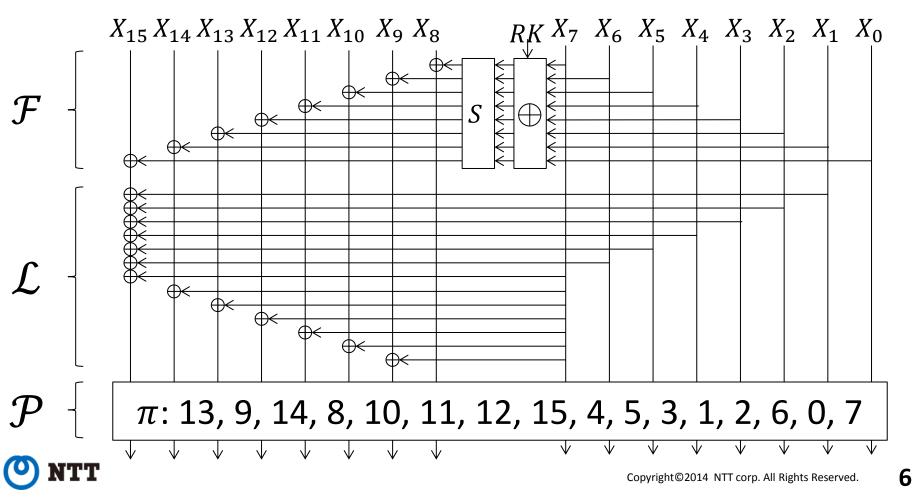
4. Extended GFN (EGFN)

EGFN was proposed by Berger et al. at SAC 2013.

- faster diffusion
- more active S-boxes in DC and LC
- stronger security against impossible differential and integral attacks
- Permutation layer is a simple swap of each side
- Two instantiations of EGFN were specified with some security arguments.

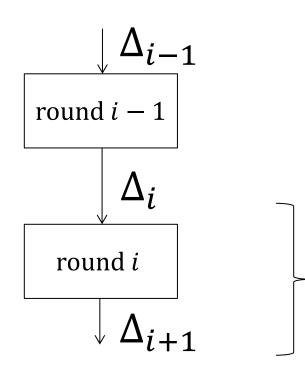
- Security argument of EGFN instances are flawed, and efficient attacks exist [ZW2014].
- The problem is caused by the simple swap of EGFN.

- Berger et al. adopted the block-shuffle.
- This is LILLIPUT [Berger++2015].



LILLIPUT Specification

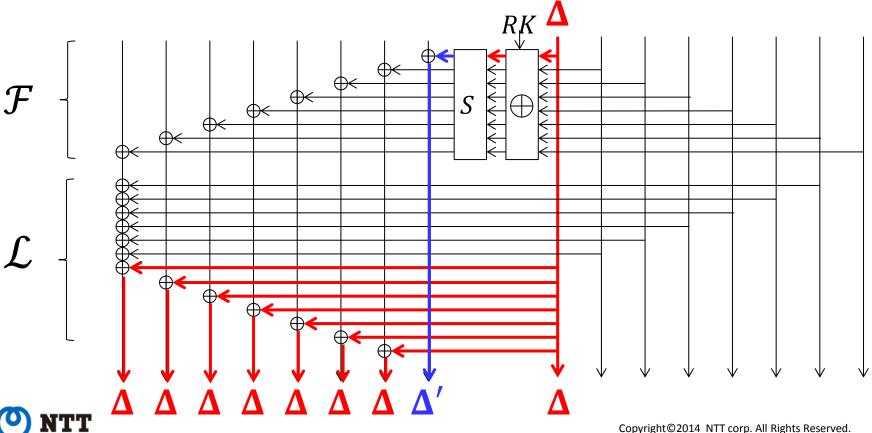
- 64-bit block, 80-bit key
- 16 branches of size 4 bits, 30 rounds



New Differential Bounds

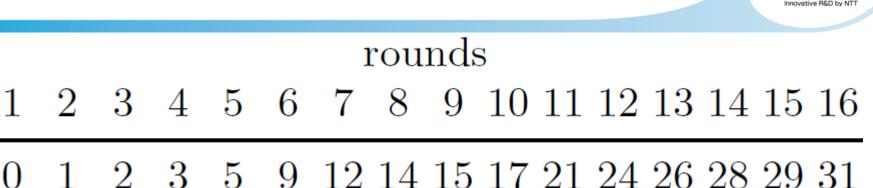
Difficulty of Analyzing Truncated Differential

Previous approach assumes Markov cipher


Evaluation in round i is independent from round i - 1.

This is true for many ciphers including AES by assuming each subkey is independent.

Difficulty of Analyzing Truncated Differential


- The assumption is not true for LILLIPUT.
- Truncated diff traces that the left 8 are active, which drops the info that the left 7 are identical.

- The difficulty is caused by the linear layer, a unique structure of EGFN.
- Efficient analysis method is unknown.

- Lower bounds of the number of active S-boxes were derived with branching method. (Details are not explained)
- The bounds are tight.
 - Input and output differential masks with 31 active S-boxes for 16 rounds are claimed.

- Innovative R&D by NTT
- Mixed-Integer-Linear-Programming (MILP) can be used to obtain the number of active S-boxes in truncated differential [Mouha++11].
- Assumption: all nibble-differences can change into any difference in every round.
- In reality, differences cannot change via \mathcal{L} layer.
- MILP only can derive lower bounds

- Our bounds do not match with designers' ones.
 (Our code is available in the paper.)
- MILP shows that even lower bounds are higher than the original expectation by the designers.

- Bounds for truncated diff cannot be tight.
- Sun et al. discussed bitwise differential search for ciphers with 4-bit S-boxes [Sun++2014].
 - SAGE, a tool in computational geometry
 - Logical Condition Model
- tight, but slow (1 week for 11 rounds)

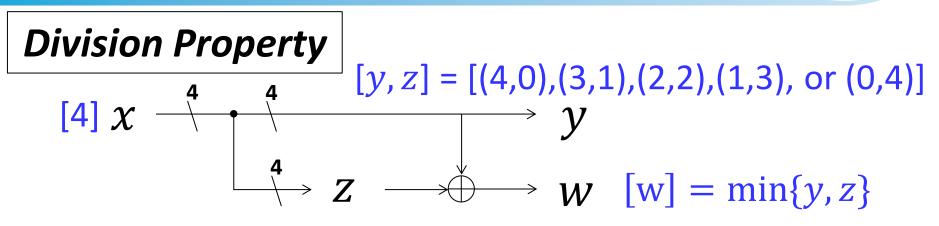
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

 designers:
 0
 1
 2
 3
 5
 9
 12
 14
 15
 17
 21
 24
 26
 28
 29
 31

 Ours:
 0
 1
 2
 3
 5
 9
 12
 14
 15
 17
 19
 23
 25
 28
 30
 32

 Bitwise:
 0
 1
 2
 3
 5
 9
 12
 15
 17
 19
 22
 ?
 ?
 ?
 ?

Best Attack with Division Property



- Division property is the generalization of the integral property [Todo2015].
- Start by 2⁶³ plaintexts with algebraic degrees (4,4,4,4,4,4,4,4, 4,4,4,4,4,4,4,4,3).
- The *balanced* property (sum is 0) is precisely traced by considering algebraic .
- E.g. S-box: deg 4 \rightarrow deg 4,

deg 3 or deg 2 \rightarrow deg 1.

S-layer decreases algebraic degrees of the state.

L-layer does not decrease sum of algebraic degrees.

 $All \ x \xrightarrow{4} \begin{array}{c} 4 \\ 4 \\ 4 \end{array} \xrightarrow{All} \\ X \end{array} \xrightarrow{} y \ All \\ \hline & X \end{array} \xrightarrow{} W \ Balanced$

L-layer is effective in integral analysis.

• Additional linear layer does not contribute to reduce algebraic degrees of the whole state.

Comparison about Integral-type distinguisher

	distinguisher	#rounds
TWINE, LBlock	integral	16
EGFN (Lilliput)	integral	9
EGFN (Lilliput)	division prop.	13

Contribution of EGFN is limited (only by 3 rounds).

• Our machine search found 13-round distinguisher.

(A,A,A,A,A,A,A,A, A, A,A,A,A,A,A,A,A,A,3)

--13R--> (U,U,U,U,U,U,B,U, U,U,U,U,U,U,U)

 4-rouns are appended for key recovery, which improves the previous best attack by 3 rounds.

approaches	distinguisher	key recovery	data	time	ref.
integral impossible differential division property	9 rounds 8 rounds 13 rounds	13 rounds 14 rounds 17 rounds	2^{63}	2^{77}	

Concluding Remarks

EGFN looks efficient, but requires complicated techniques for security evaluation.

- Differential analysis:
 - Previous bounds are wrong.
 - Nibble-wise MILP: loose bounds, but fast
 - Bit-wise MILP: tight bounds, but slow
- Division property:
 - *L*-layer does not increase algebraic degrees. This prevents classic integral, but not division property.
 - Current best key recovery attacks for 17 rounds.

Thank you for your attention !!

approach	rounds															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
branching [7]	0	1	2	3	5	9	12	14	15	17	21	24	26	28	29	31
MILP (NW, basic)	0	1	2	3	5	9	12	14	15	17	19	22	25	27	29	31
MILP (NW, advanced)	0	1	2	3	5	9	12	14	15	17	19	23	25	28	30	32
$\mathrm{MILP}\ (\mathrm{BW})$	0	1	2	3	5	9	12	15	17	19	22	?	?	?	?	?

approaches	distinguisher	key recovery	data	time	ref.
integral impossible differential division property	9 rounds 8 rounds 13 rounds	13 rounds 14 rounds 17 rounds	2^{63}	2^{77}	

