

Bridging the Gap: Advanced Tools for Side-Channel Leakage Estimation beyond Gaussian Templates and Histograms

Tobias Schneider¹, Amir Moradi¹, François-Xavier Standaert², Tim Güneysu³

¹ Ruhr-Universität Bochum
² Université catholique de Louvain
³ University of Bremen & DFKI

UbiCrypt

Wednesday, July 13th, 2016

Cryptography in Ubiquitous Computing hg Horst Görtz Institute for IT-Security RUHR-UNIVERSITÄT BOCHUM

Outline

- Introduction
- Background
- New Tools
- Results and Comparison
- Conclusion

Outline

- Introduction
- Background
- New Tools
- Results and Comparison
- Conclusion

Image from http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html

Image from http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html

Image from http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html

- Most investigated and best understood protection against SCA
- Every sensible variable is encoded into *d* shares
- Computation is performed on these shares
- Attacker (ideally) needs to combine leakage of all shares to extract information

- Most investigated and best understood protection against SCA
- Every sensible variable is encoded into *d* shares
- Computation is performed on these shares
- Attacker (ideally) needs to combine leakage of all shares to extract information

- Most investigated and best understood protection against SCA
- Every sensible variable is encoded into *d* shares
- Computation is performed on these shares
- Attacker (ideally) needs to combine leakage of all shares to extract information

- Most investigated and best understood protection against SCA
- Every sensible variable is encoded into *d* shares
- Computation is performed on these shares
- Attacker (ideally) needs to combine leakage of all shares to extract information

- Most investigated and best understood protection against SCA
- Every sensible variable is encoded into *d* shares
- Computation is performed on these shares
- Attacker (ideally) needs to combine leakage of all shares to extract information

- Most investigated and best understood protection against SCA
- Every sensible variable is encoded into *d* shares
- Computation is performed on these shares
- Attacker (ideally) needs to combine leakage of all shares to extract information

- Most investigated and best understood protection against SCA
- Every sensible variable is encoded into *d* shares
- Computation is performed on these shares
- Attacker (ideally) needs to combine leakage of all shares to extract information

• **Problem:** Schemes require significant overhead

Leakage Assessment

- Compare security and performance on a sound basis
- Various different evaluation methodologies
- Some require estimation of leakage Probability Density Function (PDF)

	Profiled	Non-Profiled	
PDF-Based	Template Attack	MIA	
Per Moment	MCP-DPA	MCC-CPA t-Test	

- Comprehensive understanding of the leakage behavior is essential
 - E.g., Threshold Implementations (TI) can require more shares to achieve *d*-th order security due to glitches
- *t*-test-based leakage detection gives only limited information

Our Contribution

- 1) Extend SCA evaluation toolbox with three PDF estimation tools
 - Current state-of-the-art tools used for SCA have limited applicability or slow convergence
- 2) Introduce per-moment computation for our PDF-based methods and attacks that use a combination of multiple moments
 - Enable thorough leakage profiling
 - More efficient attacks
- 3) Analyze masked HW design of PRESENT as a case study
 - Profiled setting
 - Non-profiled setting

Outline

- Introduction
- Background
- New Tools
- Results and Comparison
- Conclusion

Density Estimation

- Leakage PDF gives information about Pr(l|s) where l is the leakage for a specific sensible variable s
- Exact PDF is unknown but can be estimated using measurements

Density Estimation

- Two major categories: *Non-Parametric* and *Parametric*
- Non-parametric
 - No assumptions about the form of the distribution
 - Examples: histogram, kernel
- Parametric
 - Assumes certain distribution form (e.g., symmetric)
 - Example: Gaussian distribution
 - Can be parametrized with statistical moments

$$M_{d} = E(X^{d}) \text{ (Raw Moments, } d \ge 1\text{)}$$
$$CM_{d} = E((X - \mu)^{d}) \text{ (Central Moments, } d \ge 2\text{)}$$
$$SM_{d} = E\left(\left(\frac{X - \mu}{\sigma}\right)^{d}\right) \text{ (Standarized Moments, } d \ge 3\text{)}$$

2nd moment: Variance (central)

3rd moment: Skewness (standardized)

4th moment: Kurtosis (standardized)

Density Estimation

Gaussian

- Assumes leakage follows a Gaussian distribution
- PDF: $F(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- Distributions considers only first two moments (μ,σ)

Kernel

- Approximate PDF as sum of kernel functions
- PDF: $F(x) = \frac{1}{n h} \sum_{i=0}^{n-1} K\left(\frac{x l_i}{h}\right)$
- Considers all available leakage
- Parameters: bandwidth *h*, kernel function *K*(.)

Problems

- Gaussian
 - Fast and efficient
 - Not suited for implementations with more than two shares
- Histogram/Kernel
 - Can estimate all types of leakage PDF
 - Slow convergence
 - No intuitions about separate moments
- Our new tools
 - Faster convergence than kernels
 - Higher flexibility than Gaussian
 - Consider more than the first two moments (up to four)

Outline

- Introduction
- Background
- New Tools
- Results and Comparison
- Conclusion

Exponentially Modified Gaussian

- Exponentially Modified Gaussian (EMG) distribution has been used in other fields (e.g., psychology, physics)
- Similar to Gaussian, but with non-zero skewness (three moments)

• PDF:
$$F(x) = \frac{\lambda_3}{2} e^{\frac{\lambda_3}{2}(2\lambda_1 + \lambda_3\lambda_2^2 - 2x)} erfc\left(\frac{\lambda_1 + \lambda_3\lambda_2^2 - x}{\sqrt{2}\lambda_2}\right)$$

- Complementary error function: $erfc(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} dt.$
- λ_1 , λ_2 , λ_3 can be efficiently computed from the first three moments

Pearson Distribution System

- System of twelve distributions introduced by Pearson in 1895-1916
- Type determined by four moments
- We only used types I, IV, VI

Problem: Requires estimation of multiple PDFs and may face stability issues at transitions between types

Shifted Generalized Lognormal

Bridging the Gap | SAC 2016 | Tobias Schneider

Comparison

Performance:

- 100 randomly generated sets of moments
- Average computation time over 1000 executions on Intel i5-4200M CPU

Gaussian	EMG	Pearson	SGL
0.0034 s	0.0082 s	0.029 s	1.70 s

Outline

- Introduction
- Background
- New Tools
- Results and Comparison
- Conclusion

Case Study: PRESENT TI

- Threshold implementation of PRESENT
- 1st-order secure with three shares
- 100,000,000 measurements on SASEBO (Xilinx Virtex-II Pro)

Case Study: PRESENT TI

MCP-DPA by Moradi and Standaert in 2014

Open Questions:

- Information on a more formal basis
- 2) Attacking multiple moment jointly

- Information-theoretic metric introduced by Standaert *et al.* in 2009
- Based on mutual information (MI) between sensible variable S and leakage L
- Later refined to perceived information (PI) to incorporate estimated leakage distributions
- Linked with the success rate of profiled attacks by Duc *et al.* in 2015

$$\hat{PI}(S;L) = H[S] - \sum_{s \in \mathcal{S}} Pr[s] \sum_{l \in \mathcal{L}} Pr_{\mathsf{chip}}[l|s] \cdot \log_2 \hat{Pr}_{\mathsf{model}}[s|l]$$

- Information-theoretic metric introduced by Standaert *et al.* in 2009
- Based on mutual information (MI) between sensible variable S and leakage L
- Later refined to perceived information (PI) to incorporate estimated leakage distributions
- Linked with the success rate of profiled attacks by Duc *et al.* in 2015

$$\hat{PI}(S;L) = H[S] - \sum_{s \in \mathcal{S}} Pr[s] \sum_{l \in \mathcal{L}} Pr_{\mathsf{chip}}[l|s] \cdot \log_2 \hat{Pr}_{\mathsf{model}}[s|l]$$

• 10-fold cross-validation (90M for model estimation, 10M for chip distr.)

Combined Moments

Combined Moments (Sample Point 719)

Separate Moments

- Fix all but one of the moments to a fixed value
- Removes all information in these moments
- Should not change the overall form of the distribution
- Average over all classes works well for our case-study

	Dist. 1	Dist. 2	Dist. 3	Dist. 4	Average
Mean	-27.97343	-27.98114	-27.98279	-27.97826	-27.97890
Variance	22.36243	21.99796	22.21650	22.26601	22.21073
Skewness	0.00750	0.00531	0.01310	-0.00007	0.00646
Kurtosis	3.01775	3.02025	3.02192	3.01835	3.01957

Separate Moments (Gaussian)

Separate Moments (EMG)

Separate Moments (Pearson)

Separate Moments (SGL)

Template Attack (Sample Point 719)

- 90,000,000 used in profiling phase
- Uses the leakage PDF as key distinguisher
- 1000 experiments to compute success rate for different number of traces

Mutual Information Analysis (Sample Point 719)

- Requires a leakage model for attacks on the first round
- Used 3 MSB of S-box output
- 1000 experiments to compute guessing entropy (average rank of correct key)

Tool Selection

- Gaussian is still very efficient for unprotected devices and simple firstorder masking schemes
- New tools can be used for thorough leakage profiling of more complex designs
- The least complex but still applicable distribution should be used
 - 1) Moments 1-2: Gaussian
 - 2) Moments 1-3: EMG
 - 3) Moments 1-4: Pearson or SGL depending on type of leakage and computational limitations

Outline

- Introduction
- Background
- New Tools
- Results and Comparison
- Conclusion

Conclusion

- Extended SCA evaluation toolbox
- Introduced new tools which offer high flexibility and fast convergence
- Enable thorough leakage profiling of a majority of current relevant masked HW designs
- Powerful profiled and non-profiled attacks using multiple moments

Future Work:

- Combination of new methods with simplifying approaches
- Extension to multivariate scenario
- Formal investigation of "summing rule"

Thanks for Listening!

Any Questions?