Hold Your Breath, PRIMATEs Are Lightweight

Danilo Šijačić¹, Andreas B. Kidmose², Bohan Yang¹, Subhadeep Banik³, Begül Bilgin¹, Andrey Bogdanov², Ingrid Verbauwhede¹

¹ESAT/COSIC, KU Leuven and iMinds, Belgium
²Technical University of Denmark, Denmark
³Temasek Labs, Nanyang Technological University, Singapore

August 12, 2016

Introduction

CAESAR Competition

- Goal: Portfolio of authenticated encryption ciphers
- Authenticated encryption: $(C, T) = \mathcal{E}_{\mathcal{K}}(N, A, M)$
- Different use cases are considered
 - Lightweight
 - "Defense In-Depth"
 - High Performance

Notion of Lightweight

- Defined by a specific application in practice
- Common criteria used in the literature
 - Maximal area: equivalent to 2000 NAND2 gates (2000 GE)
 - Minimal usable throughput: 12 kbit/s at 100 kHz
 - Minimal security level: 80-bit
 - \blacksquare Power consumption: 1–10 $\mu W/MHz$

Notion of Lightweight

- Defined by a specific application in practice
- Common criteria used in the literature
 - Maximal area: equivalent to 2000 NAND2 gates (2000 GE)
 - Minimal usable throughput: 12 kbit/s at 100 kHz
 - Minimal security level: 80-bit
 - \blacksquare Power consumption: 1–10 $\mu W/MHz$

Implementation

Lightweight Primitive

Application Requirements

Notion of Lightweight

- Defined by a specific application in practice
- Common criteria used in the literature
 - Maximal area: equivalent to 2000 NAND2 gates (2000 GE)
 - Minimal usable throughput: 12 kbit/s at 100 kHz
 - Minimal security level: 80-bit
 - Power consumption: 1–10 $\mu W/MHz$

APE: APE-80, APE-120

HANUMAN: HANUMAN-80, HANUMAN-120

APE: APE-80, APE-120

HANUMAN: HANUMAN-80, HANUMAN-120

- General lightweight applications
- Based on an ideal permutation

APE: APE-80, APE-120

HANUMAN: HANUMAN-80, HANUMAN-120

- General lightweight applications
- Based on an ideal permutation

- Performance-critical lightweight applications
- Speed-security tradeoff

APE: APE-80, APE-120

- "Defense in-depth" lightweight applications
- Nonce-misuse resistance, release of unverified plaintext

HANUMAN: HANUMAN-80, HANUMAN-120

- General lightweight applications
- Based on an ideal permutation

- Performance-critical lightweight applications
- Speed-security tradeoff

HANUMAN

HANUMAN

HANUMAN

Rate Element (5-bit storage)

Capacity Element (5-bit storage)

Rate Element (5-bit storage)

Capacity Element (5-bit storage)

Recursive MDS Matrix Multiplication (25-bit mapping)

5

Recursive MDS Matrix Multiplication (25-bit mapping)

Compact Implementations

Implementation Cost Overview

		Size [GE]		
Core Components		Single	Full State	
	Elem. DFF	21.25	850.00	
	S-Box	28.22	1128.96	
	√ MDS	36.26	1450.40	
	Elem. XOR	12.5	12.5	

Implementation Cost Overview

		Size [GE]	
Core Components		Single	Full State
	Elem. DFF	21.25	850.00
	S-Box	28.22	1128.96
	√ ⁵ /MDS	36.26	1450.40
	Elem. XOR	12.5	12.5
Serialization Overhead		Single	Full State
→ İ	Elem. MUX2	11.25	450.00
→ ×	Elem. MUX3	18.75	750.00
→ ×	Elem. MUX4	25.00	1000.00

P80-9 Architecture

PRIMATE Round Permutation Cost

Throughput Estimate at 100 kHz

Throughput Estimate at 100 kHz

Throughput Estimate at 100 kHz

Lightweight Interface Requirements

Low area overhead

Minimize the additional read/write logic of the SRF

- Low latency overhead
 - Minimize additional latency, including μ C latency
- Compatibility with 8-bit microcontrollers
 - Translate PRIMATEs' words (25-bit datapath, 40-bit block)

HANUMAN-80 Architecture

Performance & Cost

Lightweight Requirements

HANUMAN-80		Required
Area [kGE]	2.00	max. 2.00
Throughput at 100 kHz [kb/s]	33	min. 12
Power [μ W/MHz]	5.3	1-10
Energy [pJ/bit]	15.64	n/a

Performance & Cost

Lightweight Requirements				
HANUMAN-80			Required	
Area [kGE]	2.	00	max. 2.00	
Throughput at 100 kHz [kb/s]	3	3	min. 12	
Power [μ W/MHz]	5	.3	1-10	
Energy [pJ/bit]	15	.64	n/a	
IF Register: 0.27 kGE				
Glue Logic: 0.13 kGE		Unit: 0.12 kGE		
P80-9: 1.43 kGE			HANUMAN Control: 0.05 kGE	

Max. throughput. [Mb/s]: 65.36 (at 192.81 Mhz) Latency: 118 CLK/block

Performance Comparison

Threshold Implementations

Threshold Implementations (TI)

- Provable security against first-order differential power analysis
- Boolean masking scheme based on secret sharing
- Required properties: correctness, uniformity, non-completeness

Shared PRIMATEs S-Box

Other transformations are linear; have trivial sharing

- S-Box is a 5-bit permutation designed to be naturally resilient
 - Best attainable linear and differential probabilities (2⁻⁴)
 - Quadratic, requires only 3 shares for TI

#	Area [GE]	Correct	Uniform	Non-complete	Re-mask
3	246	\checkmark		\checkmark	\checkmark
4	255	\checkmark	\checkmark	\checkmark	

Implementation Results

Docign	Area	Randomness [bit]		
Design	[kGE]	Initial sharing	Per round	
P80-9 _A -3 _{sh} P80-95 _A -3 _{sh}	5.18 4.72	400	5	
P80-9 _A -4 _{sh} P80-95 _A -4 _{sh}	6.15 6.19	600	0	

Conclusion

Conclusion

- PRIMATEs family can be implemented efficiently in hardware
- PRIMATEs family design allows versatile security and performance tradeoffs with minimal differences in hardware
- PRIMATEs family of authenticated encryption ciphers is most suitable for lightweight applications (e.g., across the Internet of Everything)

Questions?

HANUMAN-80 Instruction Set

Mnemonic	Code	Description
Reset	0	Perform software reset.
WAIT	1000-000	Put coprocessor in a idle state.
P1	1001	Perform p_1 permutation.
P1S	1101	Perform $p_1 \ensuremath{\text{ permutation with padding}}$
		spill into capacity.
P4	1001	Perform p_4 permutation.
RateX	10011111	XOR in to rate.
Rates	10010111	Shift in to rate.
RdRate	10011111	XOR in 0 ⁴⁰ to rate; emulated rate read.
CAP1S	10100111	Shift in to capacity row 1, R/W.
CAP2S	10110111	Shift in to capacity row 2, R/W.
CAP3S	11000111	Shift in to capacity row 3, W.
CAP4S	11010111	Shift in to capacity row 4, W.

Why Should Anyone Hold Their Breath?

