
PhiRSA: Exploiting the Computing
Power of Vector Instructions on

Intel Xeon Phi for RSA

Yuan Zhao1, Wuqiong Pan1, Jingqiang Lin1,
Peng Liu2, Cong Xue1, Fangyu Zheng1

1Institute of Information Engineering, Chinese Academy of Sciences
2College of Information Sciences and Technology, The Pennsylvania

State University

Outline

p Background
p Montgomery Multiplication Design
p PhiRSA Implementation
p Evaluation
p Conclusion

2

Background

Cryptography Engineering

4

p Software implementation of cryptographic
algorithm

p Performance
n  Throughput and latency
n  Fully exploiting the features of processors

Computing Power of Processors

5

p CPU
n  single-instruction-multiple-data (SIMD)

 Intel MMX/SSE/AVX, ARM NEON and AMD
 3DNow
n  simultaneous-multithreading (SMT)
 Intel Hyper-Threading

p GPU
n  single-instruction-multiple-thread (SIMT)

Intel Xeon Phi

6

p Computing Power
n  61 cores
n  512-bit VPU
n  4 hyperthreads

p Coprocessor OS
p Execution mode

n  Offload execution mode
n  Native execution mode

Intel Xeon Phi

7

p Registers
n  16 64-bit
 scalar registers
n  32 512-bit
 vector registers
n  8 16-bit
 mask registers

Intel Xeon Phi

8

p Instruction Set Architecture
n  Mask register: write-mask, carry holder
n  vpmulhud, vpmulld, vpermd, valignd
n  vector-add-with-carry instruction vpadcd

Montgomery Multiplication

9

Related Work

10

p Storing the large integers in vectors horizontally
for fine-grained parallel

 Redundant representation
p Splitting the Montgomery multiplication into two

parts to compute in parallel
p Computing multiple Montgomery multiplications

simultaneously in vector elements

Montgomery
Multiplication Design

Vector Carry Propagation Chain (VCPC)

12

p A group of vectors S, L and a carry k1 are added
together in a chain to propagate k1 forward in a
element after each round

Four VCPCs

13

Four VCPCs

14

Handling Tail

15

Computing q

16

p We use carry k1 as write-mask
p Our method does not require an extra move

instruction and an extra vector mask register

Performance Analysis

p  Compared with redundant representation

p  For 1024-bit Montgomery multiplication on Intel Xeon
Phi, VCPC method requires 704 instructions, while RR
method 1224 instructions. VCPC method only needs a
factor of 0.58 instructions than RR method

17

PhiRSA Implementation

Montgomery Multiplication

p  Implementation Issues
n  Making VPUs fully pipelined
n  Maintaining Carry Bits in Vector Mask

Registers

19

Latencies of Vector Instructions
p Four-cycle instructions (vpmulhud, vpmulld

and vpadcd) can be fully pipelined by four
hyperthreads

p  If vpermd and valignd do not use the data
produced by the prior instruction, they can be
fully pipelined

20

Adjust the Sequence of Instructions

21

p Raw order code requires 15.6 cycles, the code
after adjusting only requires 12.2 cycles which
makes the utilization of VPU reach 98%

2048-bit Montgomery Multiplication
p 2048-bit Montgomery multiplication has sixteen

VCPCs, it will produce sixteen carry vector
every round

p  Intel Xeon Phi only has eight vector mask
registers

p Using instruction kmov to move carries
between vector mask registers and general
purpose registers will rouse gigantic
performance loss

22

2048-bit Montgomery Multiplication
p  We split 2048-bit Montgomery multiplication into four

parts which are similar to 1024-bit Montgomery
multiplication implementation

23

Evaluation

Evaluation
p Platform

Coprocessor: Intel Xeon Phi 7120P
Host: Intel Xeon E5 2697v2, RedHat 6.4, Intel
Composer XE 2013.

p Performance
n  Implementation results
n  Comparisons with the previous works on Intel

Xeon Phi
n  Comparisons with the implementations on CPUs

and GPUs

25

Implementation Results
p Montgomery Multiplication

26

Implementation Results
p RSA Decryption

27

Previous Works on Intel Xeon Phi
p Comparison with the Implementation of Redundant

Representation

p Comparison with the Implementation of Carry

Propagation

28

Implementations on CPUs and GPUs
p  Compared with OpenSSL on CPUs, the throughput is

about 7 times, the latency is no more than 90%
p  Compared with the best implementation on GPUs, the

throughput is about 1.07 times, the latency is only 26%

29

Conclusion

Conclusion

p Our contributions
n  We propose a novel vector-oriented Montgomery

multiplication design and implementation to fully
exploit the computing power of vector instructions on
Intel Xeon Phi, and implement RSA named PhiRSA

n  We demonstrate that Intel Xeon Phi can be used to
achieve both high throughput and small latency for
RSA

31

Thank You!

32

zhaoyuan@iie.ac.cn

