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Background 



Cryptography Engineering 
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p Software implementation of cryptographic 
algorithm 

p Performance 
n  Throughput and latency 
n  Fully exploiting the features of processors 



Computing Power of Processors 
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p CPU 
n  single-instruction-multiple-data (SIMD) 

 Intel MMX/SSE/AVX, ARM NEON and AMD 
     3DNow 
n  simultaneous-multithreading (SMT) 
     Intel Hyper-Threading 

p GPU 
n  single-instruction-multiple-thread (SIMT) 



Intel Xeon Phi 
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p Computing Power 
n  61 cores 
n  512-bit VPU 
n  4 hyperthreads  

p Coprocessor OS 
p Execution mode 

n  Offload execution mode 
n  Native execution mode 



Intel Xeon Phi 
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p Registers 
n  16 64-bit  
      scalar registers 
n  32 512-bit  
      vector registers 
n  8 16-bit  
      mask registers  



Intel Xeon Phi 
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p Instruction Set Architecture 
n  Mask register: write-mask, carry holder 
n  vpmulhud, vpmulld, vpermd, valignd 
n  vector-add-with-carry instruction vpadcd 



Montgomery Multiplication 
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Related Work 
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p Storing the large integers in vectors horizontally 
for fine-grained parallel 

      Redundant representation 
p Splitting the Montgomery multiplication into two 

parts to compute in parallel 
p Computing multiple Montgomery multiplications 

simultaneously in vector elements 



Montgomery 
Multiplication Design 



Vector Carry Propagation Chain (VCPC) 
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p A group of vectors S, L and a carry k1 are added 
together in a chain to propagate k1 forward in a 
element after each round 



Four VCPCs 
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Four VCPCs 
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Handling Tail 
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Computing q 
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p We use carry k1 as write-mask 
p Our method does not require an extra move 

instruction and an extra vector mask register 



Performance Analysis 

p  Compared with redundant representation 

p  For 1024-bit Montgomery multiplication on Intel Xeon 
Phi, VCPC method requires 704 instructions, while RR 
method 1224 instructions. VCPC method only needs a 
factor of 0.58 instructions than RR method 
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PhiRSA Implementation 



Montgomery Multiplication 

p  Implementation Issues  
n  Making VPUs fully pipelined 
n  Maintaining Carry Bits in Vector Mask 

Registers 
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Latencies of Vector Instructions 
p Four-cycle instructions (vpmulhud, vpmulld 

and vpadcd) can be fully pipelined by four 
hyperthreads 

p  If vpermd and valignd do not use the data 
produced by the prior instruction, they can be 
fully pipelined 
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Adjust the Sequence of Instructions 
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p Raw order code requires 15.6 cycles, the code 
after adjusting only requires 12.2 cycles which 
makes the utilization of VPU reach 98% 



2048-bit Montgomery Multiplication 
p 2048-bit Montgomery multiplication has sixteen 

VCPCs, it will produce sixteen carry vector 
every round 

p  Intel Xeon Phi only has eight vector mask 
registers  

p Using instruction kmov to move carries 
between vector mask registers and general 
purpose registers will rouse gigantic 
performance loss 
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2048-bit Montgomery Multiplication 
p  We split 2048-bit Montgomery multiplication into four 

parts which are similar to 1024-bit Montgomery 
multiplication implementation 
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Evaluation 



Evaluation  
p Platform 

Coprocessor: Intel Xeon Phi 7120P 
Host: Intel Xeon E5 2697v2, RedHat 6.4, Intel 
Composer XE 2013. 

p Performance 
n  Implementation results 
n  Comparisons with the previous works on Intel 

Xeon Phi 
n  Comparisons with the implementations on CPUs 

and GPUs 
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Implementation Results 
p Montgomery Multiplication 
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Implementation Results 
p RSA Decryption 
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Previous Works on Intel Xeon Phi 
p Comparison with the Implementation of Redundant 

Representation 
 
 
 
p Comparison with the Implementation of Carry 

Propagation 
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Implementations on CPUs and GPUs 
p  Compared with OpenSSL on CPUs, the throughput is 

about 7 times, the latency is no more than 90% 
p  Compared with the best implementation on GPUs, the 

throughput is about 1.07 times, the latency is only 26% 
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Conclusion 



Conclusion  

p Our contributions 
n  We propose a novel vector-oriented Montgomery 

multiplication design and implementation to fully 
exploit the computing power of vector instructions on 
Intel Xeon Phi, and implement RSA named PhiRSA 

n  We demonstrate that Intel Xeon Phi can be used to 
achieve both high throughput and small latency for 
RSA 
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Thank You! 
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